Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) Mass Flux and Distributions in a Lake System Using Sediment Bed Passive Flux Meters and Ceramic Dosimeters

IF 1.8 4区 环境科学与生态学 Q3 WATER RESOURCES
Alexander Haluska, Andreas Meder, Bernd Susset, Klaus Röhler, Renate Seelig, Amirhossein Ershadi, Jay Cho, Michael D. Annable, Peter Grathwohl
{"title":"Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) Mass Flux and Distributions in a Lake System Using Sediment Bed Passive Flux Meters and Ceramic Dosimeters","authors":"Alexander Haluska,&nbsp;Andreas Meder,&nbsp;Bernd Susset,&nbsp;Klaus Röhler,&nbsp;Renate Seelig,&nbsp;Amirhossein Ershadi,&nbsp;Jay Cho,&nbsp;Michael D. Annable,&nbsp;Peter Grathwohl","doi":"10.1111/gwmr.12665","DOIUrl":null,"url":null,"abstract":"<p>Per- and polyfluoroalkyl substances (PFAS) are persistent in the environment due to their chemical stability and can spread quickly in a lake system due to mixing. Passive samplers allow for time-weighted average concentration monitoring and the ability to detect low concentrations, which are difficult to measure with conventional grab sampling. This study demonstrates the feasibility of deploying both ceramic dosimeters and Sediment Bed Passive Flux Meters (SBPFMs) to assess time integrated PFAS concentrations and fluxes, respectively, at a historically contaminated PFAS lake near Baden-Baden, Germany. Long-term surface water grab samples resulted in the detection of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFBS, PFHxS, and PFOS at a total concentration of approximately 1 μg/L. Dosimeters were deployed for 66 and 126 d, resulting in detected concentrations ranging from approximately 250 to 380 ng/L and 120 to 460 ng/L, respectively. The 66 d deployment resulted in the detection of PFPeA, PFHxA, PFHpA, and PFOA, whereas the 126 d deployment additionally detected PFBA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA, PFBS, PFPeS, PFOS, PFNS, and PFDS. SBPFMs resulted in the detection of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFUnA, PFTrDA, and PFBS and the determination of a total mass discharge of 5.6 g/d into the lake. Overall, dosimeters and SBPFMs are more sensitive than grab samples at detecting PFAS at low concentrations and can be used to better understand spatial distribution of PFAS in a lake system.</p>","PeriodicalId":55081,"journal":{"name":"Ground Water Monitoring and Remediation","volume":"44 4","pages":"38-52"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwmr.12665","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ground Water Monitoring and Remediation","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwmr.12665","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFAS) are persistent in the environment due to their chemical stability and can spread quickly in a lake system due to mixing. Passive samplers allow for time-weighted average concentration monitoring and the ability to detect low concentrations, which are difficult to measure with conventional grab sampling. This study demonstrates the feasibility of deploying both ceramic dosimeters and Sediment Bed Passive Flux Meters (SBPFMs) to assess time integrated PFAS concentrations and fluxes, respectively, at a historically contaminated PFAS lake near Baden-Baden, Germany. Long-term surface water grab samples resulted in the detection of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFBS, PFHxS, and PFOS at a total concentration of approximately 1 μg/L. Dosimeters were deployed for 66 and 126 d, resulting in detected concentrations ranging from approximately 250 to 380 ng/L and 120 to 460 ng/L, respectively. The 66 d deployment resulted in the detection of PFPeA, PFHxA, PFHpA, and PFOA, whereas the 126 d deployment additionally detected PFBA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA, PFBS, PFPeS, PFOS, PFNS, and PFDS. SBPFMs resulted in the detection of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFUnA, PFTrDA, and PFBS and the determination of a total mass discharge of 5.6 g/d into the lake. Overall, dosimeters and SBPFMs are more sensitive than grab samples at detecting PFAS at low concentrations and can be used to better understand spatial distribution of PFAS in a lake system.

Abstract Image

使用沉积床被动通量测量仪和陶瓷剂量计评估湖泊系统中的全氟烷基和多氟烷基物质 (PFAS) 质量通量和分布情况
全氟烷基和多氟烷基物质 (PFAS) 因其化学稳定性而在环境中具有持久性,并且会因混合而在湖泊系统中迅速扩散。被动采样器可进行时间加权平均浓度监测,并能检测到传统抓取式采样难以测量的低浓度。本研究证明了在德国巴登-巴登附近一个历史上受到全氟辛烷磺酸污染的湖泊中部署陶瓷剂量计和沉积床被动通量计(SBPFMs)分别评估时间综合全氟辛烷磺酸浓度和通量的可行性。通过长期采集地表水样本,检测到了 PFBA、PFPeA、PFHxA、PFHpA、PFOA、PFNA、PFDA、PFBS、PFHxS 和 PFOS,总浓度约为 1 μg/L。剂量计分别部署了 66 天和 126 天,检测到的浓度范围分别为约 250 至 380 纳克/升和 120 至 460 纳克/升。部署 66 d 后,检测到了 PFPeA、PFHxA、PFHpA 和 PFOA,而部署 126 d 后,又检测到了 PFBA、PFNA、PFDA、PFUnDA、PFDoDA、PFTeDA、PFBS、PFPeS、PFOS、PFNS 和 PFDS。通过 SBPFMs,检测到了 PFBA、PFPeA、PFHxA、PFHpA、PFOA、PFNA、PFUnA、PFTrDA 和 PFBS,并确定排入湖中的总质量为 5.6 克/天。总体而言,在检测低浓度 PFAS 方面,剂量计和 SBPFMs 比抓取样本更灵敏,可用于更好地了解湖泊系统中 PFAS 的空间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
10.50%
发文量
60
审稿时长
>36 weeks
期刊介绍: Since its inception in 1981, Groundwater Monitoring & Remediation® has been a resource for researchers and practitioners in the field. It is a quarterly journal that offers the best in application oriented, peer-reviewed papers together with insightful articles from the practitioner''s perspective. Each issue features papers containing cutting-edge information on treatment technology, columns by industry experts, news briefs, and equipment news. GWMR plays a unique role in advancing the practice of the groundwater monitoring and remediation field by providing forward-thinking research with practical solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信