Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors

Pub Date : 2024-07-15 DOI:10.21136/AM.2024.0016-24
Sungjin Ra, Choljin Jang, Jinmyong Hong
{"title":"Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors","authors":"Sungjin Ra,&nbsp;Choljin Jang,&nbsp;Jinmyong Hong","doi":"10.21136/AM.2024.0016-24","DOIUrl":null,"url":null,"abstract":"<div><p>We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus <span>\\(\\mathbb{T}^{d}\\)</span>, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2024.0016-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus \(\mathbb{T}^{d}\), the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.

分享
查看原文
双极半导体简化量子能量传输模型的半经典极限
我们关注的是双极半导体的简化量子能量传输模型,它包括电子和空穴密度的非线性抛物线四阶方程;电子和空穴温度的退化椭圆热方程;以及电动势的泊松方程。对于环(\mathbb{T}^{d}\)中的周期边界值问题,基于时间离散化、熵型估计和定点论证,证明了弱解的全局存在性。此外,通过使用独立于标度普朗克常数的先验估计,得到了半经典极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信