{"title":"Effect of Inlet Geometry on Film-Cooling Effectiveness from Shaped Holes","authors":"Hanlin Wang, Lesley M. Wright","doi":"10.2514/1.t6898","DOIUrl":null,"url":null,"abstract":"Modern gas turbine engines require a sophisticated cooling system design to achieve higher power output and efficiency. This study investigates the potential effect of noncylindrical inlet geometries on the performance of laid-back, fan-shaped film-cooling holes using the pressure-sensitive paint measurement technique on a flat plate. On the basis of a common pattern of outlet geometry, racetrack-shaped inlet geometries with aspect ratios of 2:1 and 4:1 were tested along with traditional cylindrical inlets. The coolant flow conditions range from [Formula: see text] = 0.3–1.5 and DR = 1 and 2. The mainstream turbulence intensity is held at 6%. Test results show that the shaped inlets provide a higher area-averaged film-cooling effectiveness over the cylindrical inlet using the same amount of coolant. For the 2:1 inlet, an advantage of 20% higher effectiveness could be maintained for DR = 1, while for DR = 2 this advantage is reduced to 10%. For the 4:1 inlet, when the coolant momentum flux ratio [Formula: see text] < 0.5, a similar or slightly higher improvement can be obtained, but when [Formula: see text] > 1, the advantage diminishes with the growing I to approximately 5%, at [Formula: see text] = 2.25. Regarding discharge coefficients, the 2:1 inlet geometry is similar to the cylindrical inlet. For the 4:1 inlet, it is 2–5% lower or nearly equivalent.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6898","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Modern gas turbine engines require a sophisticated cooling system design to achieve higher power output and efficiency. This study investigates the potential effect of noncylindrical inlet geometries on the performance of laid-back, fan-shaped film-cooling holes using the pressure-sensitive paint measurement technique on a flat plate. On the basis of a common pattern of outlet geometry, racetrack-shaped inlet geometries with aspect ratios of 2:1 and 4:1 were tested along with traditional cylindrical inlets. The coolant flow conditions range from [Formula: see text] = 0.3–1.5 and DR = 1 and 2. The mainstream turbulence intensity is held at 6%. Test results show that the shaped inlets provide a higher area-averaged film-cooling effectiveness over the cylindrical inlet using the same amount of coolant. For the 2:1 inlet, an advantage of 20% higher effectiveness could be maintained for DR = 1, while for DR = 2 this advantage is reduced to 10%. For the 4:1 inlet, when the coolant momentum flux ratio [Formula: see text] < 0.5, a similar or slightly higher improvement can be obtained, but when [Formula: see text] > 1, the advantage diminishes with the growing I to approximately 5%, at [Formula: see text] = 2.25. Regarding discharge coefficients, the 2:1 inlet geometry is similar to the cylindrical inlet. For the 4:1 inlet, it is 2–5% lower or nearly equivalent.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.