\(\Delta _{{{\varvec{i}}}_{g}}\)-invertible operators I

IF 0.5 Q3 MATHEMATICS
Asma Lahmar, Haïkel Skhiri
{"title":"\\(\\Delta _{{{\\varvec{i}}}_{g}}\\)-invertible operators I","authors":"Asma Lahmar,&nbsp;Haïkel Skhiri","doi":"10.1007/s44146-024-00151-9","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by generalized invertibility, Drazin invertibility and some recent works (Lahmar and Skhiri in Pseudo-generalized inverse I, 2022; Pseudo-generalized inverse II, 2022; Results Math 78:24, 2023; Acta Sci. Math. (Szeged) 89:389–411, 2023), this paper explores a novel class of operators called <span>\\(\\Delta _{{{\\varvec{i}}}_{g}}\\)</span>-invertible operators including all the mentioned concepts. Due to this extension, we successfully introduce a new concept of inverse that extends various inverse concepts, such as Drazin inverse, group inverse, Moore-Penrose inverse and DPG inverses, establishing a unified framework for all these concepts. We discuss several properties of this new inverse such as its uniqueness and outer inverse nature. In the context of Hilbert space, we present a specific case in which several properties of the Moore-Penrose inverse remain valid. As an application of our new concept, we prove various properties and perturbation results related to the pseudo-generalized invertibility introduced in (Lahmar and Skhiri in Pseudo-generalized inverse I, 2022).</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"267 - 293"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00151-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by generalized invertibility, Drazin invertibility and some recent works (Lahmar and Skhiri in Pseudo-generalized inverse I, 2022; Pseudo-generalized inverse II, 2022; Results Math 78:24, 2023; Acta Sci. Math. (Szeged) 89:389–411, 2023), this paper explores a novel class of operators called \(\Delta _{{{\varvec{i}}}_{g}}\)-invertible operators including all the mentioned concepts. Due to this extension, we successfully introduce a new concept of inverse that extends various inverse concepts, such as Drazin inverse, group inverse, Moore-Penrose inverse and DPG inverses, establishing a unified framework for all these concepts. We discuss several properties of this new inverse such as its uniqueness and outer inverse nature. In the context of Hilbert space, we present a specific case in which several properties of the Moore-Penrose inverse remain valid. As an application of our new concept, we prove various properties and perturbation results related to the pseudo-generalized invertibility introduced in (Lahmar and Skhiri in Pseudo-generalized inverse I, 2022).

$$\Delta _{{{\varvec{i}}}_{g}}$$ 不可逆算子 I
受广义可逆性,Drazin可逆性和最近一些作品的启发(Lahmar和Skhiri in Pseudo-generalized inverse I, 2022;伪广义逆II, 2022;数学78:24,2023;科学学报数学。(seeged) 89:389 - 411,2023),本文探讨了一类新的算子\(\Delta _{{{\varvec{i}}}_{g}}\) -可逆算子,包括所有上述概念。由于这种扩展,我们成功地引入了一个新的逆概念,它扩展了各种逆概念,如Drazin逆、群逆、Moore-Penrose逆和DPG逆,建立了所有这些概念的统一框架。讨论了该新逆的唯一性和外逆性质。在Hilbert空间中,我们给出了Moore-Penrose逆的几个性质仍然有效的一个特例。作为我们新概念的应用,我们证明了(Lahmar和Skhiri in pseudo-generalized inverse I, 2022)中引入的伪广义可逆性的各种性质和摄动结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信