J. M. García-Arcos, Amine Mehidi, Julissa Sánchez Velázquez, Pau Guillamat, C. Tomba, Laura Houzet, L. Capolupo, Giovanni D’Angelo, Adai Colom, Elizabeth Hinde, Charlotte Aumeier, Aurélien Roux
{"title":"Actin dynamics sustains spatial gradients of membrane tension in adherent cells","authors":"J. M. García-Arcos, Amine Mehidi, Julissa Sánchez Velázquez, Pau Guillamat, C. Tomba, Laura Houzet, L. Capolupo, Giovanni D’Angelo, Adai Colom, Elizabeth Hinde, Charlotte Aumeier, Aurélien Roux","doi":"10.1101/2024.07.15.603517","DOIUrl":null,"url":null,"abstract":"Tension propagates extremely fast in lipid bilayers, precluding the formation of tension gradients. Nevertheless, plasma membrane tension gradients have been evidenced in migrating cells and along axons. Here, using a fluorescent membrane tension probe, we show that membrane tension gradients exist in all adherent cells, whether they migrate or not. Non-adhering cells do not display tension gradients. We further show that branched actin increases tension, while membrane-to-cortex attachments facilitate its propagation. Tension is the lowest at the edge of adhesion sites and highest at protrusions, setting the boundaries of the tension gradients. By providing a quantitative and mechanistic basis behind the organization of membrane tension gradients, our work explains how they are actively sustained in adherent cells.","PeriodicalId":9124,"journal":{"name":"bioRxiv","volume":"60 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.15.603517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tension propagates extremely fast in lipid bilayers, precluding the formation of tension gradients. Nevertheless, plasma membrane tension gradients have been evidenced in migrating cells and along axons. Here, using a fluorescent membrane tension probe, we show that membrane tension gradients exist in all adherent cells, whether they migrate or not. Non-adhering cells do not display tension gradients. We further show that branched actin increases tension, while membrane-to-cortex attachments facilitate its propagation. Tension is the lowest at the edge of adhesion sites and highest at protrusions, setting the boundaries of the tension gradients. By providing a quantitative and mechanistic basis behind the organization of membrane tension gradients, our work explains how they are actively sustained in adherent cells.