{"title":"A method based on Vision Transformer and multiple image information for vehicle lane-changing recognition in mixed traffic and connected environment","authors":"Peng Ji , Chuang Zhang , Zichen Zhang","doi":"10.1080/19427867.2024.2377900","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the safety of autonomous vehicles in mixed traffic and connected environment, it is crucial to recognize the lane-changing intentions (LCIs) of human-driven vehicles for autonomous vehicles. This paper presents a novel method for LCI recognition, which extracts features from the driving state and relative motion of the target vehicle and its neighbors. The method applies short-time Fourier transform, Gramian angular summation field, and Gramian angular difference field to the time-series data, and generates three grayscale images, which are merged into one information fusion image (IFI) by image processing techniques. The IFIs are then classified into three categories: lane keeping, lane-changing left, and lane-changing right, using the Vision Transformer model with transfer learning to speed up convergence and reduce training cost. The experimental results demonstrate that the proposed method outperforms the traditional methods, achieving an accuracy of 95.65% for recognizing LCI 3s before the lane change point.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 4","pages":"Pages 719-731"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786724000584","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the safety of autonomous vehicles in mixed traffic and connected environment, it is crucial to recognize the lane-changing intentions (LCIs) of human-driven vehicles for autonomous vehicles. This paper presents a novel method for LCI recognition, which extracts features from the driving state and relative motion of the target vehicle and its neighbors. The method applies short-time Fourier transform, Gramian angular summation field, and Gramian angular difference field to the time-series data, and generates three grayscale images, which are merged into one information fusion image (IFI) by image processing techniques. The IFIs are then classified into three categories: lane keeping, lane-changing left, and lane-changing right, using the Vision Transformer model with transfer learning to speed up convergence and reduce training cost. The experimental results demonstrate that the proposed method outperforms the traditional methods, achieving an accuracy of 95.65% for recognizing LCI 3s before the lane change point.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.