Neural-network-based transfer learning for predicting cryo-CMOS characteristics from small datasets

T. Inaba, Yusuke Chiashi, Minoru Ogura, H. Asai, H. Fuketa, H. Oka, S. Iizuka, K. Kato, S. Shitakata, T. Mori
{"title":"Neural-network-based transfer learning for predicting cryo-CMOS characteristics from small datasets","authors":"T. Inaba, Yusuke Chiashi, Minoru Ogura, H. Asai, H. Fuketa, H. Oka, S. Iizuka, K. Kato, S. Shitakata, T. Mori","doi":"10.35848/1882-0786/ad63f1","DOIUrl":null,"url":null,"abstract":"\n Transfer learning was examined to predict current-voltage (I-V) characteristics of MOSFETs at cryogenic temperatures. An experimental dataset was obtained from approximately 800 silicon-on-insulator MOSFETs using an automated cryogenic wafer prober to pre-train a 3-hidden-layer neural network (NN) model. Transfer learning based on the NN model was then conducted using another small dataset from 2 bulk MOSFETs. The transfer learning NN model predicted more realistic I-V characteristics and threshold voltages than a control NN model trained using only the small dataset. This study demonstrates cryogenic MOSFET characteristics prediction from a small dataset to reduce time and financial costs.","PeriodicalId":503885,"journal":{"name":"Applied Physics Express","volume":"11 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35848/1882-0786/ad63f1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transfer learning was examined to predict current-voltage (I-V) characteristics of MOSFETs at cryogenic temperatures. An experimental dataset was obtained from approximately 800 silicon-on-insulator MOSFETs using an automated cryogenic wafer prober to pre-train a 3-hidden-layer neural network (NN) model. Transfer learning based on the NN model was then conducted using another small dataset from 2 bulk MOSFETs. The transfer learning NN model predicted more realistic I-V characteristics and threshold voltages than a control NN model trained using only the small dataset. This study demonstrates cryogenic MOSFET characteristics prediction from a small dataset to reduce time and financial costs.
基于神经网络的迁移学习,从小型数据集预测低温-CMOS 特性
研究人员利用迁移学习预测低温条件下 MOSFET 的电流-电压 (I-V) 特性。实验数据集来自约 800 个硅-绝缘体 MOSFET,使用自动低温晶圆探测仪对 3 个隐藏层神经网络 (NN) 模型进行预训练。然后,使用来自 2 块 MOSFET 的另一个小型数据集,在 NN 模型的基础上进行迁移学习。与仅使用小型数据集训练的对照神经网络模型相比,迁移学习神经网络模型预测的 I-V 特性和阈值电压更为真实。这项研究展示了利用小型数据集预测低温 MOSFET 特性的方法,从而减少了时间和财务成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信