{"title":"Facile preparation of graphene-graphene oxide liquid cells and their application in liquid-phase STEM imaging of Pt atoms","authors":"Masaki Takeguchi, K. Mitsuishi, A. Hashimoto","doi":"10.35848/1882-0786/ad63f2","DOIUrl":null,"url":null,"abstract":"\n Graphene-graphene oxide (GO) hybrid liquid cells (LCs) for liquid-phase scanning transmission electron microscopy (STEM) were fabricated using a facile method with commercial graphene on a polymethyl methacrylate sheet and GO on a TEM grid. LCs containing Pt nanoparticles (NPs) and pure water were efficiently produced and observed via STEM. Their composition and thickness were characterized by STEM-electron energy-loss spectroscopy. High-resolution (HR) STEM revealed slow-moving Pt NPs’ atomic structures and fast-moving single Pt atoms at the LC’s thin edges. Minimal damage during HR STEM indicated stable LCs because of their excellent electrical and thermal conductivities and radiolysis species scavenging ability.","PeriodicalId":503885,"journal":{"name":"Applied Physics Express","volume":"7 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35848/1882-0786/ad63f2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene-graphene oxide (GO) hybrid liquid cells (LCs) for liquid-phase scanning transmission electron microscopy (STEM) were fabricated using a facile method with commercial graphene on a polymethyl methacrylate sheet and GO on a TEM grid. LCs containing Pt nanoparticles (NPs) and pure water were efficiently produced and observed via STEM. Their composition and thickness were characterized by STEM-electron energy-loss spectroscopy. High-resolution (HR) STEM revealed slow-moving Pt NPs’ atomic structures and fast-moving single Pt atoms at the LC’s thin edges. Minimal damage during HR STEM indicated stable LCs because of their excellent electrical and thermal conductivities and radiolysis species scavenging ability.