{"title":"Roles of Two-Dimensional Materials in Antibiofilm Applications: Recent Developments and Prospects","authors":"Lei Xin, Hongkun Zhao, Min Peng, Yuanjie Zhu","doi":"10.3390/ph17070950","DOIUrl":null,"url":null,"abstract":"Biofilm-associated infections pose a significant challenge in healthcare, constituting 80% of bacterial infections and often leading to persistent, chronic conditions. Conventional antibiotics struggle with efficacy against these infections due to the high tolerance and resistance induced by bacterial biofilm barriers. Two-dimensional nanomaterials, such as those from the graphene family, boron nitride, molybdenum disulfide (MoS2), MXene, and black phosphorus, hold immense potential for combating biofilms. These nanomaterial-based antimicrobial strategies are novel tools that show promise in overcoming resistant bacteria and stubborn biofilms, with the ability to circumvent existing drug resistance mechanisms. This review comprehensively summarizes recent developments in two-dimensional nanomaterials, as both therapeutics and nanocarriers for precision antibiotic delivery, with a specific focus on nanoplatforms coupled with photothermal/photodynamic therapy in the elimination of bacteria and penetrating and/or ablating biofilm. This review offers important insight into recent advances and current limitations of current antibacterial nanotherapeutic approaches, together with a discussion on future developments in the field, for the overall benefit of public health.","PeriodicalId":509865,"journal":{"name":"Pharmaceuticals","volume":"7 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ph17070950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biofilm-associated infections pose a significant challenge in healthcare, constituting 80% of bacterial infections and often leading to persistent, chronic conditions. Conventional antibiotics struggle with efficacy against these infections due to the high tolerance and resistance induced by bacterial biofilm barriers. Two-dimensional nanomaterials, such as those from the graphene family, boron nitride, molybdenum disulfide (MoS2), MXene, and black phosphorus, hold immense potential for combating biofilms. These nanomaterial-based antimicrobial strategies are novel tools that show promise in overcoming resistant bacteria and stubborn biofilms, with the ability to circumvent existing drug resistance mechanisms. This review comprehensively summarizes recent developments in two-dimensional nanomaterials, as both therapeutics and nanocarriers for precision antibiotic delivery, with a specific focus on nanoplatforms coupled with photothermal/photodynamic therapy in the elimination of bacteria and penetrating and/or ablating biofilm. This review offers important insight into recent advances and current limitations of current antibacterial nanotherapeutic approaches, together with a discussion on future developments in the field, for the overall benefit of public health.