{"title":"Cellular and Molecular Biology of Mitochondria in Chronic Obstructive Pulmonary Disease","authors":"Chin-Ling Li, Shih-Feng Liu","doi":"10.3390/ijms25147780","DOIUrl":null,"url":null,"abstract":"Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by enduring airflow limitation and chronic inflammation. Growing evidence highlights mitochondrial dysfunction as a critical factor in COPD development and progression. This review explores the cellular and molecular biology of mitochondria in COPD, focusing on structural and functional changes, including alterations in mitochondrial shape, behavior, and respiratory chain complexes. We discuss the impact on cellular signaling pathways, apoptosis, and cellular aging. Therapeutic strategies targeting mitochondrial dysfunction, such as antioxidants and mitochondrial biogenesis inducers, are examined for their potential to manage COPD. Additionally, we consider the role of mitochondrial biomarkers in diagnosis, evaluating disease progression, and monitoring treatment efficacy. Understanding the interplay between mitochondrial biology and COPD is crucial for developing targeted therapies to slow disease progression and improve patient outcomes. Despite advances, further research is needed to fully elucidate mitochondrial dysfunction mechanisms, discover new biomarkers, and develop targeted therapies, aiming for comprehensive disease management that preserves lung function and enhances the quality of life for COPD patients.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25147780","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by enduring airflow limitation and chronic inflammation. Growing evidence highlights mitochondrial dysfunction as a critical factor in COPD development and progression. This review explores the cellular and molecular biology of mitochondria in COPD, focusing on structural and functional changes, including alterations in mitochondrial shape, behavior, and respiratory chain complexes. We discuss the impact on cellular signaling pathways, apoptosis, and cellular aging. Therapeutic strategies targeting mitochondrial dysfunction, such as antioxidants and mitochondrial biogenesis inducers, are examined for their potential to manage COPD. Additionally, we consider the role of mitochondrial biomarkers in diagnosis, evaluating disease progression, and monitoring treatment efficacy. Understanding the interplay between mitochondrial biology and COPD is crucial for developing targeted therapies to slow disease progression and improve patient outcomes. Despite advances, further research is needed to fully elucidate mitochondrial dysfunction mechanisms, discover new biomarkers, and develop targeted therapies, aiming for comprehensive disease management that preserves lung function and enhances the quality of life for COPD patients.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).