{"title":"Low-light visibility enhancement for improving visual surveillance in intelligent waterborne transportation systems","authors":"Ryan Wen Liu, Chu Han, Yanhong Huang","doi":"10.1049/itr2.12534","DOIUrl":null,"url":null,"abstract":"<p>Under low-light imaging conditions, visual scenes captured by intelligent waterborne transportation systems often suffer from low-intensity illumination and noise corruption. The visual quality degradation would lead to negative effects in maritime surveillance, e.g., vessel detection, positioning and tracking, etc. To restore the low-light images, we develop an effective visibility enhancement method, which contains a coarse-to-fine framework of spatially-smooth illumination estimation. In particular, the refined illumination is effectively generated by optimizing a novel structure-preserving variational model on the coarse version, estimated through the Max-RGB method. The proposed variational model has the capacity of suppressing the textural details while preserving the main structures in the refined illumination map. To further boost imaging performance, the refined illumination is adjusted through the Gamma correction to increase brightness in dark regions. We then estimate the refined reflection map by implementing the joint denoising and detail boosting strategies on the original reflection. In this work, the original reflection is yielded by dividing the input image using the refined illumination. We finally produce the enhanced image by multiplying the adjusted illumination and the refined reflection. Experiments on synthetic and realistic datasets illustrate that our method can achieve comparable results to the state-of-the-art techniques under different imaging conditions.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 9","pages":"1632-1651"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12534","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12534","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Under low-light imaging conditions, visual scenes captured by intelligent waterborne transportation systems often suffer from low-intensity illumination and noise corruption. The visual quality degradation would lead to negative effects in maritime surveillance, e.g., vessel detection, positioning and tracking, etc. To restore the low-light images, we develop an effective visibility enhancement method, which contains a coarse-to-fine framework of spatially-smooth illumination estimation. In particular, the refined illumination is effectively generated by optimizing a novel structure-preserving variational model on the coarse version, estimated through the Max-RGB method. The proposed variational model has the capacity of suppressing the textural details while preserving the main structures in the refined illumination map. To further boost imaging performance, the refined illumination is adjusted through the Gamma correction to increase brightness in dark regions. We then estimate the refined reflection map by implementing the joint denoising and detail boosting strategies on the original reflection. In this work, the original reflection is yielded by dividing the input image using the refined illumination. We finally produce the enhanced image by multiplying the adjusted illumination and the refined reflection. Experiments on synthetic and realistic datasets illustrate that our method can achieve comparable results to the state-of-the-art techniques under different imaging conditions.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf