CryoSamba: self-supervised deep volumetric denoising for cryo-electron tomography data

bioRxiv Pub Date : 2024-07-16 DOI:10.1101/2024.07.11.603117
Jose Inacio Costa-Filho, Liam Theveny, Marilina de Sautu, Tom Kirchhausen
{"title":"CryoSamba: self-supervised deep volumetric denoising for cryo-electron tomography data","authors":"Jose Inacio Costa-Filho, Liam Theveny, Marilina de Sautu, Tom Kirchhausen","doi":"10.1101/2024.07.11.603117","DOIUrl":null,"url":null,"abstract":"Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We introduce CryoSamba, a self-supervised deep learning-based model designed for denoising cryo-ET images. CryoSamba enhances single consecutive 2D planes in tomograms by averaging motion-compensated nearby planes through deep learning interpolation, effectively mimicking increased exposure. This approach amplifies coherent signals and reduces high-frequency noise, substantially improving tomogram contrast and SNR. CryoSamba operates on 3D volumes without needing pre-recorded images, synthetic data, labels or annotations, noise models, or paired volumes. CryoSamba suppresses high-frequency information less aggressively than do existing cryo-ET denoising methods, while retaining real information, as shown both by visual inspection and by Fourier shell correlation analysis of icosahedrally symmetric virus particles. Thus, CryoSamba enhances the analytical pipeline for direct 3D tomogram visual interpretation.","PeriodicalId":9124,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.11.603117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We introduce CryoSamba, a self-supervised deep learning-based model designed for denoising cryo-ET images. CryoSamba enhances single consecutive 2D planes in tomograms by averaging motion-compensated nearby planes through deep learning interpolation, effectively mimicking increased exposure. This approach amplifies coherent signals and reduces high-frequency noise, substantially improving tomogram contrast and SNR. CryoSamba operates on 3D volumes without needing pre-recorded images, synthetic data, labels or annotations, noise models, or paired volumes. CryoSamba suppresses high-frequency information less aggressively than do existing cryo-ET denoising methods, while retaining real information, as shown both by visual inspection and by Fourier shell correlation analysis of icosahedrally symmetric virus particles. Thus, CryoSamba enhances the analytical pipeline for direct 3D tomogram visual interpretation.
CryoSamba:低温电子断层扫描数据的自监督深度容积去噪
低温电子断层扫描(cryo-ET)作为一种高分辨率成像工具,在三维可视化亚细胞结构和分子细节方面取得了快速发展。由于固有的低信噪比(SNR),直接图像检测仍具有挑战性。我们介绍了 CryoSamba,这是一种基于深度学习的自我监督模型,专为低温电子显微镜图像去噪而设计。CryoSamba 通过深度学习插值对附近的运动补偿平面进行平均,从而增强断层扫描中单个连续的二维平面,有效地模拟增加曝光。这种方法能放大相干信号,降低高频噪声,从而大幅提高断层图像对比度和信噪比。CryoSamba 可在三维体积上运行,无需预先录制图像、合成数据、标签或注释、噪声模型或配对体积。CryoSamba 对高频信息的抑制比现有低温电子去噪方法更少,同时保留了真实信息,这一点可通过目测和对二十面体对称病毒颗粒的傅里叶壳相关性分析得到证明。因此,CryoSamba 增强了直接三维断层视觉解读的分析管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信