Filtering for highly variable genes and high quality spots improves phylogenetic analysis of cancer spatial transcriptomics Visium data

bioRxiv Pub Date : 2024-07-16 DOI:10.1101/2024.07.11.603166
Alexandra “Sasha” Gavryushkina, H. R. Pinkney, Sarah D. Diermeier, A. Gavryushkin
{"title":"Filtering for highly variable genes and high quality spots improves phylogenetic analysis of cancer spatial transcriptomics Visium data","authors":"Alexandra “Sasha” Gavryushkina, H. R. Pinkney, Sarah D. Diermeier, A. Gavryushkin","doi":"10.1101/2024.07.11.603166","DOIUrl":null,"url":null,"abstract":"Phylogenetic relationship of cells within tumours can help us to understand how cancer develops in space and time, iden-tify driver mutations and other evolutionary events that enable can-cer growth and spread. Numerous studies have reconstructed phylo-genies from single-cell DNA-seq data. Here we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complemen-tary) data source that integrates multiple sources of evolutionary information including point mutations, copy-number changes, and epimutations. Recent attempts to use such data, although promis-ing, raised many methodological challenges. Here, we explored data-preprocessing and modelling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths.","PeriodicalId":9124,"journal":{"name":"bioRxiv","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.11.603166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phylogenetic relationship of cells within tumours can help us to understand how cancer develops in space and time, iden-tify driver mutations and other evolutionary events that enable can-cer growth and spread. Numerous studies have reconstructed phylo-genies from single-cell DNA-seq data. Here we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complemen-tary) data source that integrates multiple sources of evolutionary information including point mutations, copy-number changes, and epimutations. Recent attempts to use such data, although promis-ing, raised many methodological challenges. Here, we explored data-preprocessing and modelling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths.
筛选高变异基因和高质量点可改进癌症空间转录组学 Visium 数据的系统发育分析
肿瘤内细胞的系统发育关系可以帮助我们了解癌症在空间和时间上的发展过程,识别驱动突变和其他导致癌症生长和扩散的进化事件。许多研究已经从单细胞DNA-seq数据中重建了植物基因。在这里,我们正在研究对空间分辨的近单细胞RNA-seq数据进行系统发育分析的问题,RNA-seq数据是一种具有成本效益的替代(或补充)数据源,它整合了多种进化信息来源,包括点突变、拷贝数变化和表突变。最近对此类数据的使用尝试虽然前景广阔,但也提出了许多方法上的挑战。在此,我们探讨了对 Visium 空间转录组学数据进行进化分析的数据预处理和建模方法。我们的结论是,只使用高度可变的基因并考虑组织覆盖点的异质性 RNA 捕获可改善重建的拓扑关系并影响估计的分支长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信