The Obata–Vétois argument and its applications

Jeffrey S. Case
{"title":"The Obata–Vétois argument and its applications","authors":"Jeffrey S. Case","doi":"10.1515/crelle-2024-0048","DOIUrl":null,"url":null,"abstract":"\n <jats:p>We extend Vétois’ Obata-type argument and use it to identify a closed interval <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mi>I</m:mi>\n <m:mi>n</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0048_ineq_0001.png\"/>\n <jats:tex-math>I_{n}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>n</m:mi>\n <m:mo>≥</m:mo>\n <m:mn>3</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0048_ineq_0002.png\"/>\n <jats:tex-math>n\\geq 3</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, containing zero such that if <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>a</m:mi>\n <m:mo>∈</m:mo>\n <m:msub>\n <m:mi>I</m:mi>\n <m:mi>n</m:mi>\n </m:msub>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0048_ineq_0003.png\"/>\n <jats:tex-math>a\\in I_{n}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mi>M</m:mi>\n <m:mi>n</m:mi>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mi>g</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0048_ineq_0004.png\"/>\n <jats:tex-math>(M^{n},g)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is a compact conformally Einstein manifold with nonnegative scalar curvature and <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:msub>\n <m:mi>Q</m:mi>\n <m:mn>4</m:mn>\n </m:msub>\n <m:mo>+</m:mo>\n <m:mrow>\n <m:mi>a</m:mi>\n <m:mo>⁢</m:mo>\n <m:msub>\n <m:mi>σ</m:mi>\n <m:mn>2</m:mn>\n </m:msub>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0048_ineq_0005.png\"/>\n <jats:tex-math>Q_{4}+a\\sigma_{2}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> constant, then it is Einstein.\nWe also relax the scalar curvature assumption to the nonnegativity of the Yamabe constant under a more restrictive assumption on 𝑎.\nOur results allow us to compute many Yamabe-type constants and prove sharp Sobolev inequalities on compact Einstein manifolds with nonnegative scalar curvature.\nIn particular, we show that compact locally symmetric Einstein four-manifolds with nonnegative scalar curvature extremize the functional determinant of the conformal Laplacian, partially answering a question of Branson and Ørsted.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"29 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We extend Vétois’ Obata-type argument and use it to identify a closed interval I n I_{n} , n 3 n\geq 3 , containing zero such that if a I n a\in I_{n} and ( M n , g ) (M^{n},g) is a compact conformally Einstein manifold with nonnegative scalar curvature and Q 4 + a σ 2 Q_{4}+a\sigma_{2} constant, then it is Einstein. We also relax the scalar curvature assumption to the nonnegativity of the Yamabe constant under a more restrictive assumption on 𝑎. Our results allow us to compute many Yamabe-type constants and prove sharp Sobolev inequalities on compact Einstein manifolds with nonnegative scalar curvature. In particular, we show that compact locally symmetric Einstein four-manifolds with nonnegative scalar curvature extremize the functional determinant of the conformal Laplacian, partially answering a question of Branson and Ørsted.
小畑维托论证及其应用
我们扩展韦托伊斯的 Obata 型论证,用它来确定一个封闭区间 I n I_{n} , n≥ 3 n\geq 3 , 其中包含零。 , n ≥ 3 n\geq 3 , containing zero such that if a ∈ I n a\in I_{n} and ( M n , g ) (M^{n},g) is a compact conformally Einstein manifold with nonnegative scalar curvature and Q 4 + a ⁢ σ 2 Q_{4}+a\sigma_{2} constant, then it is Einstein.We also relax the scalar curvature assumption to the nonnegativity of the Yamabe constant under a more restrictive assumption on 𝑎.Our results allow us to compute many Yamabe-type constants and prove sharp Sobolev inequalities on compact Einstein manifolds with nonnegative scalar curvature.In particular, we show that compact locally symmetric Einstein four-manifolds with nonnegative scalar curvature extremize the functional determinant of the conformal Laplacian, partially answering a question of Branson and Ørsted.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信