ORTHOGONAL GENERALIZED ( 𝜎 , 𝜏 ) (σ,τ)-DERIVATIONS IN SEMIPRIME Γ Γ-NEAR RINGS

V.S.V. Krishna Murty, C. Jaya Subba Reddy, K. Sukanya
{"title":"ORTHOGONAL GENERALIZED ( 𝜎 , 𝜏 ) (σ,τ)-DERIVATIONS IN SEMIPRIME Γ Γ-NEAR RINGS","authors":"V.S.V. Krishna Murty, C. Jaya Subba Reddy, K. Sukanya","doi":"10.37418/amsj.13.3.4","DOIUrl":null,"url":null,"abstract":"Consider a 2-torsion-free semiprime \\(\\Gamma\\)-near ring \\(N\\). Assume that \\(\\sigma\\) and \\(\\tau\\) are automorphisms on \\(N\\). An additive map \\(d_1: N \\to N\\) is called a \\((\\sigma, \\tau)\\)-derivation if it satisfies \\[d_1(u \\alpha v) = d_1(u) \\alpha \\sigma(v) + \\tau(u) \\alpha d_1(v) \\]for all \\(u, v \\in N\\) and \\(\\alpha \\in \\Gamma\\). An additive map \\(D_1: N \\to N\\) is termed a generalized \\((\\sigma, \\tau)\\)-derivation associated with the \\((\\sigma, \\tau)\\)-derivation \\(d_1\\) if \\[D_1(u \\alpha v) = D_1(u) \\alpha \\sigma(v) + \\tau(u) \\alpha d_1(v)\\]for all \\(u, v \\in N\\) and \\(\\alpha \\in \\Gamma\\). Consider two generalized\\hspace{0.1cm} \\((\\sigma, \\tau)\\)-derivations \\(D_1\\) and \\(D_2\\) on \\(N\\). This paper introduces the concept of the orthogonality of two generalized \\((\\sigma, \\tau)\\)-derivations \\(D_1\\) and \\(D_2\\) and presents several results regarding the orthogonality of generalized \\((\\sigma, \\tau)\\)-derivations and \\((\\sigma, \\tau)\\)-derivations in a \\(\\Gamma\\)-near ring.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"31 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.13.3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a 2-torsion-free semiprime \(\Gamma\)-near ring \(N\). Assume that \(\sigma\) and \(\tau\) are automorphisms on \(N\). An additive map \(d_1: N \to N\) is called a \((\sigma, \tau)\)-derivation if it satisfies \[d_1(u \alpha v) = d_1(u) \alpha \sigma(v) + \tau(u) \alpha d_1(v) \]for all \(u, v \in N\) and \(\alpha \in \Gamma\). An additive map \(D_1: N \to N\) is termed a generalized \((\sigma, \tau)\)-derivation associated with the \((\sigma, \tau)\)-derivation \(d_1\) if \[D_1(u \alpha v) = D_1(u) \alpha \sigma(v) + \tau(u) \alpha d_1(v)\]for all \(u, v \in N\) and \(\alpha \in \Gamma\). Consider two generalized\hspace{0.1cm} \((\sigma, \tau)\)-derivations \(D_1\) and \(D_2\) on \(N\). This paper introduces the concept of the orthogonality of two generalized \((\sigma, \tau)\)-derivations \(D_1\) and \(D_2\) and presents several results regarding the orthogonality of generalized \((\sigma, \tau)\)-derivations and \((\sigma, \tau)\)-derivations in a \(\Gamma\)-near ring.
口形广义 ( 𝜎 , 𝜏 ) (σ,τ) --半音 Γ Γ --耳环的派生词
考虑一个无二扭的半环(Gamma)-近环(N)。假设\(\sigma\) 和\(\tau\)是\(N\)上的自变量。一个加法映射 (d_1:如果它满足[d_1(u \alpha v) = d_1(u) \alpha \sigma(v) + \tau(u) \alpha d_1(v) ] for all \(u, v \in N\) and\(\alpha \in \Gamma),那么它就叫做一个(((sigma, tau))衍生。)一个加法映射 (D_1:N到N)被称为与(((西格玛、\D_1(u α v) = D_1(u) α \sigma(v) + \tau(u) \α d_1(v)\]for all \(u, v \in N\) and\(\alpha \in \Gamma\).考虑两个广义空间{0.1cm}\上的(D_1)和(D_2)的衍生。本文介绍了两个广义的((\sigma, \tau))支点((D_1)和(D_2))的正交性概念,并给出了关于广义的((\sigma, \tau))支点和((\sigma, \tau))支点在(\Gamma)近环中的正交性的几个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信