{"title":"Dynamic service function chain placement in mobile computing: An asynchronous advantage actor-critic based approach","authors":"Heling Jiang, Hai Xia, Mansoureh Zare","doi":"10.1002/ett.5022","DOIUrl":null,"url":null,"abstract":"<p>Internet of Things (IoT) devices are constantly sending data to the cloud. The resource-rich cloud computing paradigm provides users with significant potential to reduce costs and improve quality of service (QoS). However, the centralized architecture of cloud data centers and thousands of miles away from clients has reduced the efficiency of this paradigm in delay-sensitive and real-time applications. In order to get over these restrictions, fog computing was integrated into cloud computing as a new paradigm. Without using the cloud, fog computing can supply the resources needed for IoT devices at the network's edge. Delay is thereby decreased because processing, analysis, and storage are located closer to the clients and the areas where the data is created. In Mobile Edge Computing (MEC) networks, this study sets up an architecture based on Deep Reinforcement Learning (DRL) to deliver online services to end users. We introduce a DRL-based method named DPPR for <span>D</span>ynamic service function chain (SFC) <span>P</span>lacement that uses <span>P</span>arallelized virtual network functions (VNFs) and seeks to optimize the long-term expected cumulative <span>R</span>eward. Online service provider DPPR can accomplish processing acceleration through parallel VNF sharing. In addition, by extracting the distribution of initialized VNFs, DPPR improves the capacity to handle subsequent requests. The conducted simulations demonstrate the efficacy of the proposed method, so that the average number of accepted requests is improved by about 11.7%.</p>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.5022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Internet of Things (IoT) devices are constantly sending data to the cloud. The resource-rich cloud computing paradigm provides users with significant potential to reduce costs and improve quality of service (QoS). However, the centralized architecture of cloud data centers and thousands of miles away from clients has reduced the efficiency of this paradigm in delay-sensitive and real-time applications. In order to get over these restrictions, fog computing was integrated into cloud computing as a new paradigm. Without using the cloud, fog computing can supply the resources needed for IoT devices at the network's edge. Delay is thereby decreased because processing, analysis, and storage are located closer to the clients and the areas where the data is created. In Mobile Edge Computing (MEC) networks, this study sets up an architecture based on Deep Reinforcement Learning (DRL) to deliver online services to end users. We introduce a DRL-based method named DPPR for Dynamic service function chain (SFC) Placement that uses Parallelized virtual network functions (VNFs) and seeks to optimize the long-term expected cumulative Reward. Online service provider DPPR can accomplish processing acceleration through parallel VNF sharing. In addition, by extracting the distribution of initialized VNFs, DPPR improves the capacity to handle subsequent requests. The conducted simulations demonstrate the efficacy of the proposed method, so that the average number of accepted requests is improved by about 11.7%.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications