Efficient and scalable covariate drift detection in machine learning systems with serverless computing

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
{"title":"Efficient and scalable covariate drift detection in machine learning systems with serverless computing","authors":"","doi":"10.1016/j.future.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>As machine learning models are increasingly deployed in production, robust monitoring and detection of concept and covariate drift become critical. This paper addresses the gap in the widespread adoption of drift detection techniques by proposing a serverless-based approach for batch covariate drift detection in ML systems. Leveraging the open-source OSCAR framework and the open-source Frouros drift detection library, we develop a set of services that enable parallel execution of two key components: the ML inference pipeline and the batch covariate drift detection pipeline. To this end, our proposal takes advantage of the elasticity and efficiency of serverless computing for ML pipelines, including scalability, cost-effectiveness, and seamless integration with existing infrastructure. We evaluate this approach through an edge ML use case, showcasing its operation on a simulated batch covariate drift scenario. Our research highlights the importance of integrating drift detection as a fundamental requirement in developing robust and trustworthy AI systems and encourages the adoption of these techniques in ML deployment pipelines. In this way, organizations can proactively identify and mitigate the adverse effects of covariate drift while capitalizing on the benefits offered by serverless computing.</p></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167739X24003716/pdfft?md5=703be1c6b28f907c0f5552d2b8f50e16&pid=1-s2.0-S0167739X24003716-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24003716","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

As machine learning models are increasingly deployed in production, robust monitoring and detection of concept and covariate drift become critical. This paper addresses the gap in the widespread adoption of drift detection techniques by proposing a serverless-based approach for batch covariate drift detection in ML systems. Leveraging the open-source OSCAR framework and the open-source Frouros drift detection library, we develop a set of services that enable parallel execution of two key components: the ML inference pipeline and the batch covariate drift detection pipeline. To this end, our proposal takes advantage of the elasticity and efficiency of serverless computing for ML pipelines, including scalability, cost-effectiveness, and seamless integration with existing infrastructure. We evaluate this approach through an edge ML use case, showcasing its operation on a simulated batch covariate drift scenario. Our research highlights the importance of integrating drift detection as a fundamental requirement in developing robust and trustworthy AI systems and encourages the adoption of these techniques in ML deployment pipelines. In this way, organizations can proactively identify and mitigate the adverse effects of covariate drift while capitalizing on the benefits offered by serverless computing.

利用无服务器计算在机器学习系统中进行高效、可扩展的协变量漂移检测
随着机器学习模型越来越多地部署到生产中,对概念和协变量漂移的稳健监控和检测变得至关重要。本文提出了一种基于无服务器的方法,用于在 ML 系统中批量检测协变量漂移,从而弥补了漂移检测技术在广泛应用方面的不足。利用开源的 OSCAR 框架和开源的 Frouros 漂移检测库,我们开发了一套服务,可以并行执行两个关键组件:ML 推理流水线和批量协变量漂移检测流水线。为此,我们的建议利用了无服务器计算对 ML 管道的弹性和效率,包括可扩展性、成本效益以及与现有基础设施的无缝集成。我们通过一个边缘 ML 用例对这种方法进行了评估,展示了它在模拟批量协变量漂移场景中的运行情况。我们的研究强调了将漂移检测作为开发稳健、可信的人工智能系统的基本要求的重要性,并鼓励在人工智能部署管道中采用这些技术。这样,企业就能主动识别并减轻协变量漂移的不利影响,同时充分利用无服务器计算带来的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信