Jarrod M Ludwig , Brian Weidel , Brian O’Malley , Michael Connerton , Jacques Rinchard
{"title":"Histological analysis of deepwater sculpin ovaries supports single spawning reproductive strategy","authors":"Jarrod M Ludwig , Brian Weidel , Brian O’Malley , Michael Connerton , Jacques Rinchard","doi":"10.1016/j.jglr.2024.102375","DOIUrl":null,"url":null,"abstract":"<div><p>Deepwater sculpin (<em>Myoxocephalus thompsonii</em>) were considered extirpated from Lake Ontario prior to the 1990s but have since resurged and are now an abundant offshore demersal species. As deepwater sculpin reproduction is poorly described, an investigation of their gonadal development and fecundity was conducted to better understand their reproductive biology. To evaluate spawning period duration and if females spawn multiple times during their spawning period, we compared deepwater sculpin gonadosomatic index (GSI), gonadal development, and fecundity using individuals collected in fall and spring from 2018 to 2021. Our analysis revealed female GSI was greater in fall (8.1 ± 6.2 %) than spring (4.4 ± 4.3 %). Absolute fecundity averaged 763 ± 246 oocytes and relative fecundity averaged 19 ± 6 oocytes per gram of fish. Histological analysis revealed the presence of only one batch of developing oocytes in the ovary (n = 60), indicating group-synchronous ovarian organization. Our findings suggest deepwater sculpin spawn once annually but have a protracted spawning season indicated by prolonged elevated GSI values. Therefore, protracted spawning in deepwater sculpin likely results in an extended period of larval emergence rather than the majority occurring in late spring as previously suggested. A longer timeframe for deepwater sculpin larval emergence may increase reproductive success and contribute to their population’s recovery.</p></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"50 4","pages":"Article 102375"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024001254","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Deepwater sculpin (Myoxocephalus thompsonii) were considered extirpated from Lake Ontario prior to the 1990s but have since resurged and are now an abundant offshore demersal species. As deepwater sculpin reproduction is poorly described, an investigation of their gonadal development and fecundity was conducted to better understand their reproductive biology. To evaluate spawning period duration and if females spawn multiple times during their spawning period, we compared deepwater sculpin gonadosomatic index (GSI), gonadal development, and fecundity using individuals collected in fall and spring from 2018 to 2021. Our analysis revealed female GSI was greater in fall (8.1 ± 6.2 %) than spring (4.4 ± 4.3 %). Absolute fecundity averaged 763 ± 246 oocytes and relative fecundity averaged 19 ± 6 oocytes per gram of fish. Histological analysis revealed the presence of only one batch of developing oocytes in the ovary (n = 60), indicating group-synchronous ovarian organization. Our findings suggest deepwater sculpin spawn once annually but have a protracted spawning season indicated by prolonged elevated GSI values. Therefore, protracted spawning in deepwater sculpin likely results in an extended period of larval emergence rather than the majority occurring in late spring as previously suggested. A longer timeframe for deepwater sculpin larval emergence may increase reproductive success and contribute to their population’s recovery.
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.