On G2 approximation of planar algebraic curves under certified error control by quintic Pythagorean-hodograph splines

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Xin-Yu Wang , Li-Yong Shen , Chun-Ming Yuan , Sonia Pérez-Díaz
{"title":"On G2 approximation of planar algebraic curves under certified error control by quintic Pythagorean-hodograph splines","authors":"Xin-Yu Wang ,&nbsp;Li-Yong Shen ,&nbsp;Chun-Ming Yuan ,&nbsp;Sonia Pérez-Díaz","doi":"10.1016/j.cagd.2024.102374","DOIUrl":null,"url":null,"abstract":"<div><p>The Pythagorean-Hodograph curve (PH curve) is a valuable curve type extensively utilized in computer-aided geometric design and manufacturing. This paper presents an approach to approximate a planar algebraic curve within a bounding box by employing piecewise quintic PH spline curves, while maintaining <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> smoothness of the approximating curve and preserving second-order geometric details at singularities. The bounding box encompasses all <em>x</em>-coordinates of key topological points, ensuring accurate representation. The paper explores the analysis of the <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> interpolation problem for quintic PH curves with invariant convexity, transforming the quest for interpolation solutions into identifying positive roots within a set of algebraic equations. Through infinitesimal order analysis, it is established that a solution necessarily exists following adequate subdivision, laying the groundwork for practical application. Finally, the paper introduces a novel algorithm that integrates prior research to construct the approximating curve while maintaining control over the desired error levels.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102374"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624001080","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The Pythagorean-Hodograph curve (PH curve) is a valuable curve type extensively utilized in computer-aided geometric design and manufacturing. This paper presents an approach to approximate a planar algebraic curve within a bounding box by employing piecewise quintic PH spline curves, while maintaining G2 smoothness of the approximating curve and preserving second-order geometric details at singularities. The bounding box encompasses all x-coordinates of key topological points, ensuring accurate representation. The paper explores the analysis of the G2 interpolation problem for quintic PH curves with invariant convexity, transforming the quest for interpolation solutions into identifying positive roots within a set of algebraic equations. Through infinitesimal order analysis, it is established that a solution necessarily exists following adequate subdivision, laying the groundwork for practical application. Finally, the paper introduces a novel algorithm that integrates prior research to construct the approximating curve while maintaining control over the desired error levels.

论五次毕达哥拉斯-正交样条曲线认证误差控制下的平面代数曲线 G2 近似
毕达哥拉斯曲线(PH 曲线)是计算机辅助几何设计和制造中广泛使用的一种重要曲线类型。本文介绍了一种通过使用片断五次方 PH 样条曲线在边界框内逼近平面代数曲线的方法,同时保持逼近曲线的 G2 平滑度和奇点处的二阶几何细节。边界框涵盖了关键拓扑点的所有 x 坐标,确保了精确的表示。论文探讨了具有不变凸性的五元 PH 曲线的 G2 插值问题分析,将插值解的探索转化为在代数方程组中确定正根。通过无穷小阶分析,确定了在充分细分后必然存在解,为实际应用奠定了基础。最后,论文介绍了一种新颖的算法,该算法整合了之前的研究,在构建近似曲线的同时,还能保持对所需误差水平的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Aided Geometric Design
Computer Aided Geometric Design 工程技术-计算机:软件工程
CiteScore
3.50
自引率
13.30%
发文量
57
审稿时长
60 days
期刊介绍: The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following: -Mathematical and Geometric Foundations- Curve, Surface, and Volume generation- CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision- Industrial, medical, and scientific applications. The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信