Intelligent non-destructive measurement of coal moisture via microwave spectroscopy and chemometrics

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS
Jun Tian , Ming Li , Zhiyi Tan , Meng Lei , Lin Ke , Liang Zou
{"title":"Intelligent non-destructive measurement of coal moisture via microwave spectroscopy and chemometrics","authors":"Jun Tian ,&nbsp;Ming Li ,&nbsp;Zhiyi Tan ,&nbsp;Meng Lei ,&nbsp;Lin Ke ,&nbsp;Liang Zou","doi":"10.1016/j.chemolab.2024.105175","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid and non-destructive measurement of coal moisture content is essential in the coal industry for production, transportation and utilization purposes. Existing measurement methods have still drawbacks, such as being time-consuming, producing destructive samples and yielding unstable outcomes. To address these issues, this paper explored the utilization of broadband microwave spectrum for intelligent coal moisture measurement. A multi-type outliers detection method based on the Monte-Carlo cross-validation (MCCV) strategy was used to prevent masking effect of microwave spectra. In order to effectively extract microwave spectral features and establish correlations with coal moisture, a novel neural network model, UC-PLSR, is proposed by combining U-Net, Convolutional Block Attention Module (CBAM) and Partial Least Squares Regression (PLSR) algorithm. Furthermore, a design scheme/case of a microwave measurement device for coal moisture was presented, offering guidance for the development of rapid coal moisture measurement instruments or on-site measurement systems. Experimental results demonstrated that the proposed model outperformed traditional chemometrics methods, achieving superior prediction accuracy and generalization capability with <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.8756, MAE = 1.2523 and RMSE=1.6560.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"252 ","pages":"Article 105175"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001151","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid and non-destructive measurement of coal moisture content is essential in the coal industry for production, transportation and utilization purposes. Existing measurement methods have still drawbacks, such as being time-consuming, producing destructive samples and yielding unstable outcomes. To address these issues, this paper explored the utilization of broadband microwave spectrum for intelligent coal moisture measurement. A multi-type outliers detection method based on the Monte-Carlo cross-validation (MCCV) strategy was used to prevent masking effect of microwave spectra. In order to effectively extract microwave spectral features and establish correlations with coal moisture, a novel neural network model, UC-PLSR, is proposed by combining U-Net, Convolutional Block Attention Module (CBAM) and Partial Least Squares Regression (PLSR) algorithm. Furthermore, a design scheme/case of a microwave measurement device for coal moisture was presented, offering guidance for the development of rapid coal moisture measurement instruments or on-site measurement systems. Experimental results demonstrated that the proposed model outperformed traditional chemometrics methods, achieving superior prediction accuracy and generalization capability with R2 = 0.8756, MAE = 1.2523 and RMSE=1.6560.

通过微波光谱和化学计量学对煤炭水分进行智能无损测量
快速、无损地测量煤炭含水量对煤炭行业的生产、运输和利用至关重要。现有的测量方法仍存在一些缺点,如耗时长、产生的样品具有破坏性、结果不稳定等。针对这些问题,本文探索了利用宽带微波频谱进行智能煤炭水分测量的方法。采用基于蒙特卡洛交叉验证(MCCV)策略的多类型异常值检测方法来防止微波频谱的掩蔽效应。为了有效提取微波频谱特征并建立与煤炭水分的相关性,结合 U-Net、卷积块注意模块(CBAM)和偏最小二乘回归(PLSR)算法,提出了一种新型神经网络模型 UC-PLSR。此外,还提出了煤水分微波测量装置的设计方案/案例,为煤水分快速测量仪器或现场测量系统的开发提供了指导。实验结果表明,所提出的模型优于传统的化学计量学方法,具有更高的预测精度和泛化能力,R2 = 0.8756,MAE = 1.2523,RMSE = 1.6560。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信