A variation of constant formula for Caputo–Hadamard fractional stochastic differential equations⋆

Pub Date : 2024-07-14 DOI:10.1016/j.spl.2024.110216
Min Li , Chengming Huang , Nan Wang
{"title":"A variation of constant formula for Caputo–Hadamard fractional stochastic differential equations⋆","authors":"Min Li ,&nbsp;Chengming Huang ,&nbsp;Nan Wang","doi":"10.1016/j.spl.2024.110216","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the existence and uniqueness of the mild solutions of Caputo–Hadamard fractional stochastic differential equations (SDEs). Subsequently, a variation of constants formula is derived for these equations. The primary proof techniques rely on Itô’s isometry, the martingale representation theorem, and the adaptation of the variation of constants formula employed in deterministic Caputo–Hadamard fractional differential equations (FDEs). Furthermore, we employ the constant variation formula to investigate the mean-square stability of a class of scalar Caputo–Hadamard fractional SDEs and provide stability criteria. Consequently, this class of scalar equations can serve as basic test equations to study the stability of numerical methods for Caputo–Hadamard fractional SDEs.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the existence and uniqueness of the mild solutions of Caputo–Hadamard fractional stochastic differential equations (SDEs). Subsequently, a variation of constants formula is derived for these equations. The primary proof techniques rely on Itô’s isometry, the martingale representation theorem, and the adaptation of the variation of constants formula employed in deterministic Caputo–Hadamard fractional differential equations (FDEs). Furthermore, we employ the constant variation formula to investigate the mean-square stability of a class of scalar Caputo–Hadamard fractional SDEs and provide stability criteria. Consequently, this class of scalar equations can serve as basic test equations to study the stability of numerical methods for Caputo–Hadamard fractional SDEs.

分享
查看原文
卡普托-哈达玛德分数随机微分方程的常数变化公式⋆
本文研究了 Caputo-Hadamard 分数随机微分方程(SDE)的温和解的存在性和唯一性。随后,推导出了这些方程的常数变化公式。主要的证明技术依赖于伊托等势、马丁格尔代表定理,以及对确定性卡普托-哈达玛分数微分方程(FDEs)中使用的常量变化公式的改编。此外,我们还利用常数变化公式研究了一类标量卡普托-哈达玛分数微分方程的均方稳定性,并提供了稳定性标准。因此,这一类标量方程可以作为研究 Caputo-Hadamard 分数 SDE 数值方法稳定性的基本测试方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信