Junhong Li, Jijia Kang, Jie Wu, Hongpin Wang, Xiaoguang Yang
{"title":"Research on credit card default repayment prediction model","authors":"Junhong Li, Jijia Kang, Jie Wu, Hongpin Wang, Xiaoguang Yang","doi":"10.1016/j.jfds.2024.100136","DOIUrl":null,"url":null,"abstract":"<div><p>This study compares the predictive ability of various machine learning models for credit card default repayment within different prediction frameworks, using data from a commercial bank in China. Firstly, utilizing different tree models, we explore the impact on post-default repayment of different factors. Next, a split-sample time series prediction is carried out with two neural network algorithms, BPNN and ELM. The outcomes indicate that, ELM yields a significantly superior prediction performance compared to the BPNN model. Thirdly, the predictive performances of ten machine learning models are compared using full-sample data. The findings demonstrate that XGBoost and ELM models have superior predictive performances in full-sample analyses. Fourthly, this study employs the EMD data decomposition technique to examine the predictive ability of the XGBoost and ELM models in various frequency data. The results indicate that the predictive efficacy may differ depending on the frequency and repayment period after default. The findings are valuable for commercial banks in developing a framework and selecting a methodology to address the challenge of predicting credit card default payments.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"10 ","pages":"Article 100136"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405918824000217/pdfft?md5=21435a376ab3e2fef9741931c14d8cf4&pid=1-s2.0-S2405918824000217-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918824000217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This study compares the predictive ability of various machine learning models for credit card default repayment within different prediction frameworks, using data from a commercial bank in China. Firstly, utilizing different tree models, we explore the impact on post-default repayment of different factors. Next, a split-sample time series prediction is carried out with two neural network algorithms, BPNN and ELM. The outcomes indicate that, ELM yields a significantly superior prediction performance compared to the BPNN model. Thirdly, the predictive performances of ten machine learning models are compared using full-sample data. The findings demonstrate that XGBoost and ELM models have superior predictive performances in full-sample analyses. Fourthly, this study employs the EMD data decomposition technique to examine the predictive ability of the XGBoost and ELM models in various frequency data. The results indicate that the predictive efficacy may differ depending on the frequency and repayment period after default. The findings are valuable for commercial banks in developing a framework and selecting a methodology to address the challenge of predicting credit card default payments.