Zhe Wang , Kuan Chang , Jianchao Sheng , Jinbo Fu , Weiwei Liu
{"title":"Axial force coherence study of strut loading in soft soil deep excavation","authors":"Zhe Wang , Kuan Chang , Jianchao Sheng , Jinbo Fu , Weiwei Liu","doi":"10.1016/j.jocs.2024.102386","DOIUrl":null,"url":null,"abstract":"<div><p>The coherence of the axial force between steel struts during excavation, i.e. the axial force coherence, is a critical factor affecting axial force control. This study introduces a novel method for calculating the horizontal displacement of a diaphragm wall, applicable to servo-controlled excavation, based on the non-limit earth pressure theory. Furthermore, the study investigates the coherence of axial forces in prestressed struts. First, the diaphragm wall is modeled as a rectangular thin plate with two opposite edges simply supported and the other two edges free. It is then divided into <span><math><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></math></span> small rectangles along the depth and length directions, and the external combined force within each small rectangle is calculated. Secondly, a non-linear set of force–displacement equations is constructed, and the recursive equation of the displacement of the diaphragm wall is obtained by applying the Newton–Raphson method. The method’s accuracy is confirmed through field measurement comparisons. Subsequently, The paper then applies the proposed methodology to scrutinize the effects of loading on individual and multiple struts on the axial forces of adjacent struts. The loading scheme for struts in deep excavation within soft soil areas can be referenced by utilizing this method.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"81 ","pages":"Article 102386"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001790","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The coherence of the axial force between steel struts during excavation, i.e. the axial force coherence, is a critical factor affecting axial force control. This study introduces a novel method for calculating the horizontal displacement of a diaphragm wall, applicable to servo-controlled excavation, based on the non-limit earth pressure theory. Furthermore, the study investigates the coherence of axial forces in prestressed struts. First, the diaphragm wall is modeled as a rectangular thin plate with two opposite edges simply supported and the other two edges free. It is then divided into small rectangles along the depth and length directions, and the external combined force within each small rectangle is calculated. Secondly, a non-linear set of force–displacement equations is constructed, and the recursive equation of the displacement of the diaphragm wall is obtained by applying the Newton–Raphson method. The method’s accuracy is confirmed through field measurement comparisons. Subsequently, The paper then applies the proposed methodology to scrutinize the effects of loading on individual and multiple struts on the axial forces of adjacent struts. The loading scheme for struts in deep excavation within soft soil areas can be referenced by utilizing this method.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).