History, review and summary of the cavity flow phenomena

IF 2.5 3区 工程技术 Q2 MECHANICS
Caroline O.L. Hamilton Smith , Nicholas Lawson , Gareth A. Vio
{"title":"History, review and summary of the cavity flow phenomena","authors":"Caroline O.L. Hamilton Smith ,&nbsp;Nicholas Lawson ,&nbsp;Gareth A. Vio","doi":"10.1016/j.euromechflu.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>This paper provides a detailed historical review of the cavity flow phenomena in fluid mechanics, from recorded studies in the late 19th century to more recent work. Research has been reviewed, independently and in culmination with other studies, to summarise the major and minor governing parameters of the flow. Outlined are influences of technology, regarding numerical models, experimental methods, analysis, and control techniques. All Mach regimes are assessed; low incompressible, sub-, trans-, super- and hypersonic where substantial research was available. A large variety of cavity geometry was presented, mostly rectangular, with more complex features akin to industry application, and where available, assessment of the boundary layer structure is also included. Conclusions on present understanding, and requirements for future work are given, with an aligned set of available data.</p><p>Cavity flow-field initialisation and development is dependent on; upstream (U/S) flow conditions of; airspeed <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span>, boundary layer (BL) disturbance (<span><math><mi>δ</mi></math></span>), displacement (<span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>) and momentum (<span><math><mi>θ</mi></math></span>) thickness, either laminar or turbulent, and cavity geometry; length (<span><math><mi>L</mi></math></span>), depth (<span><math><mi>D</mi></math></span>) and width (<span><math><mi>W</mi></math></span>), with ratios <span><math><mrow><mi>L</mi><mo>/</mo><mi>D</mi><mo>,</mo><mi>L</mi><mo>/</mo><mi>W</mi><mo>,</mo><mi>δ</mi><mo>/</mo><mi>D</mi></mrow></math></span> and <span><math><mrow><mi>L</mi><mo>/</mo><mi>θ</mi></mrow></math></span> defining cavity response. I.e., a narrow cavity with a thin BL U/S tends toward a periodic 3D flow-field, with 3D effects and periodicity decreasing as <span><math><mi>W</mi></math></span> and <span><math><mi>δ</mi></math></span> increase. Control is achievable through SL stabilisation via spanwise disturbance from the leading edge (LE), or thickening the BL, thus shear layer (SL). Experiments are preferred over numerical models, due to the inefficiency and high cost of required models (Colonius, 2001; Rowley and Williams, 2006; Lawson and Barakos, 2011). We understand effects of <span><math><mi>L</mi></math></span>, <span><math><mi>D</mi></math></span>, <span><math><mrow><mi>L</mi><mo>/</mo><mi>D</mi></mrow></math></span>, and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span>, thus future work should focus on <span><math><mi>W</mi></math></span>, BL and how they impact mode switching and stream/spanwise flow propagation. Also introducing more complex geometry, realistic to application, to observe additional 3D effects and U/S momentum change, in contribution to a scaling parameter and determination of criteria for activation of material displacement.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 32-72"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000931/pdfft?md5=16170beb85af69fa56b723cbcc601b67&pid=1-s2.0-S0997754624000931-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000931","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a detailed historical review of the cavity flow phenomena in fluid mechanics, from recorded studies in the late 19th century to more recent work. Research has been reviewed, independently and in culmination with other studies, to summarise the major and minor governing parameters of the flow. Outlined are influences of technology, regarding numerical models, experimental methods, analysis, and control techniques. All Mach regimes are assessed; low incompressible, sub-, trans-, super- and hypersonic where substantial research was available. A large variety of cavity geometry was presented, mostly rectangular, with more complex features akin to industry application, and where available, assessment of the boundary layer structure is also included. Conclusions on present understanding, and requirements for future work are given, with an aligned set of available data.

Cavity flow-field initialisation and development is dependent on; upstream (U/S) flow conditions of; airspeed M, boundary layer (BL) disturbance (δ), displacement (δ) and momentum (θ) thickness, either laminar or turbulent, and cavity geometry; length (L), depth (D) and width (W), with ratios L/D,L/W,δ/D and L/θ defining cavity response. I.e., a narrow cavity with a thin BL U/S tends toward a periodic 3D flow-field, with 3D effects and periodicity decreasing as W and δ increase. Control is achievable through SL stabilisation via spanwise disturbance from the leading edge (LE), or thickening the BL, thus shear layer (SL). Experiments are preferred over numerical models, due to the inefficiency and high cost of required models (Colonius, 2001; Rowley and Williams, 2006; Lawson and Barakos, 2011). We understand effects of L, D, L/D, and M, thus future work should focus on W, BL and how they impact mode switching and stream/spanwise flow propagation. Also introducing more complex geometry, realistic to application, to observe additional 3D effects and U/S momentum change, in contribution to a scaling parameter and determination of criteria for activation of material displacement.

空腔流动现象的历史、回顾和总结
本文对流体力学中的空腔流现象进行了详细的历史回顾,从 19 世纪末有记录的研究到最近的工作。本文回顾了独立进行的研究以及与其他研究共同进行的研究,总结了流动的主要和次要控制参数。概述了技术对数值模型、实验方法、分析和控制技术的影响。评估了所有的马赫状态:低不可压缩、亚、跨、超和高超音速,这些状态都有大量的研究成果。介绍了大量不同的空腔几何形状,大多数为矩形,但也有与工业应用类似的更复杂的特征,在有条件的情况下,还包括对边界层结构的评估。对目前的理解和未来工作的要求给出了结论,并对可用数据集进行了调整。空腔流场的初始化和发展取决于:上游(U/S)流动条件;空速 M∞、边界层(BL)扰动(δ)、位移(δ∗)和动量(θ)厚度(层流或湍流)以及空腔几何形状;长度(L)、深度(D)和宽度(W),其中 L/D、L/W、δ/D 和 L/θ 的比率决定了空腔响应。也就是说,具有薄 BL U/S 的窄腔趋向于周期性三维流场,三维效应和周期性随着 W 和 δ 的增加而减小。可以通过来自前缘(LE)的跨度扰动或加厚 BL(即剪切层)来稳定 SL,从而实现控制。由于所需的模型效率低、成本高,实验比数值模型更受欢迎(Colonius,2001 年;Rowley 和 Williams,2006 年;Lawson 和 Barakos,2011 年)。我们了解 L、D、L/D 和 M∞ 的影响,因此未来的工作应侧重于 W、BL 以及它们如何影响模式切换和流/跨向流动传播。此外,还可以引入更复杂的几何图形,以观察额外的三维效应和 U/S 动量变化,从而为缩放参数和材料位移激活标准的确定做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信