Physics-informed and data-driven modeling of an industrial wastewater treatment plant with actual validation

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"Physics-informed and data-driven modeling of an industrial wastewater treatment plant with actual validation","authors":"","doi":"10.1016/j.compchemeng.2024.108801","DOIUrl":null,"url":null,"abstract":"<div><p>Data-driven modeling is essential in chemical engineering, especially in complex systems like wastewater treatment plants. Recurrent neural networks are effective for modeling parameters in wastewater treatment process such as dissolved oxygen concentration and chemical oxygen demand due to their nonlinear adaptability. However, traditional models face challenges such as the requirement for larger datasets and more frequent sampling, noisy measurements, and overfitting. To address this, physics-informed neural networks integrate physical knowledge for improved performance. In our study, we apply both approaches to a wastewater treatment plant, enhancing prediction performance. Our results demonstrate that physics-informed models perform successfully in offline and online validation, especially when standard methods fail. They maintain effectiveness without frequent updates. Yet, integrating physics-informed knowledge can introduce noise when standard methods suffice. This result points out the need for careful consideration of model choice in different scenarios.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002199","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven modeling is essential in chemical engineering, especially in complex systems like wastewater treatment plants. Recurrent neural networks are effective for modeling parameters in wastewater treatment process such as dissolved oxygen concentration and chemical oxygen demand due to their nonlinear adaptability. However, traditional models face challenges such as the requirement for larger datasets and more frequent sampling, noisy measurements, and overfitting. To address this, physics-informed neural networks integrate physical knowledge for improved performance. In our study, we apply both approaches to a wastewater treatment plant, enhancing prediction performance. Our results demonstrate that physics-informed models perform successfully in offline and online validation, especially when standard methods fail. They maintain effectiveness without frequent updates. Yet, integrating physics-informed knowledge can introduce noise when standard methods suffice. This result points out the need for careful consideration of model choice in different scenarios.

工业废水处理厂的物理信息和数据驱动模型及实际验证
数据驱动建模在化学工程中至关重要,尤其是在污水处理厂等复杂系统中。递归神经网络因其非线性适应性,对污水处理过程中的溶解氧浓度和化学需氧量等参数建模非常有效。然而,传统模型面临着一些挑战,如需要更大的数据集和更频繁的采样、噪声测量和过度拟合。为解决这一问题,物理信息神经网络整合了物理知识,从而提高了性能。在我们的研究中,我们将这两种方法应用于污水处理厂,以提高预测性能。我们的结果表明,物理信息模型在离线和在线验证中表现出色,尤其是在标准方法失效的情况下。它们无需频繁更新即可保持有效性。然而,当标准方法已经足够时,整合物理信息知识可能会引入噪声。这一结果表明,在不同情况下选择模型时需要慎重考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信