Adam Kabela, Zdeněk Ryjáček, Mária Skyvová, Petr Vrána
{"title":"A closure for Hamilton-connectedness in {K1,3,Γ3}-free graphs","authors":"Adam Kabela, Zdeněk Ryjáček, Mária Skyvová, Petr Vrána","doi":"10.1016/j.disc.2024.114154","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a closure technique for Hamilton-connectedness of <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free graphs, where <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. The closure turns a claw-free graph into a line graph of a multigraph while preserving its (non)-Hamilton-connectedness. The most technical parts of the proof are computer-assisted.</p><p>The main application of the closure is given in a subsequent paper showing that every 3-connected <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free graph is Hamilton-connected, thus resolving one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24002851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a closure technique for Hamilton-connectedness of -free graphs, where is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. The closure turns a claw-free graph into a line graph of a multigraph while preserving its (non)-Hamilton-connectedness. The most technical parts of the proof are computer-assisted.
The main application of the closure is given in a subsequent paper showing that every 3-connected -free graph is Hamilton-connected, thus resolving one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness.