{"title":"No existence of a linear algorithm for the one-dimensional Fourier phase retrieval","authors":"Meng Huang , Zhiqiang Xu","doi":"10.1016/j.jco.2024.101886","DOIUrl":null,"url":null,"abstract":"<div><p>Fourier phase retrieval, which aims to reconstruct a signal from its Fourier magnitude, is of fundamental importance in fields of engineering and science. In this paper, we provide a theoretical understanding of algorithms for the one-dimensional Fourier phase retrieval problem. Specifically, we demonstrate that if an algorithm exists which can reconstruct an arbitrary signal <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> in <span><math><mtext>Poly</mtext><mo>(</mo><mi>N</mi><mo>)</mo><mi>log</mi><mo></mo><mo>(</mo><mn>1</mn><mo>/</mo><mi>ϵ</mi><mo>)</mo></math></span> time to reach <em>ϵ</em>-precision from its magnitude of discrete Fourier transform and its initial value <span><math><mi>x</mi><mo>(</mo><mn>0</mn><mo>)</mo></math></span>, then <span><math><mi>P</mi><mo>=</mo><mrow><mi>NP</mi></mrow></math></span>. This partially elucidates the phenomenon that, despite the fact that almost all signals are uniquely determined by their Fourier magnitude and the absolute value of their initial value <span><math><mo>|</mo><mi>x</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>|</mo></math></span>, no algorithm with theoretical guarantees has been proposed in the last few decades. Our proofs employ the result in computational complexity theory that the Product Partition problem is NP-complete in the strong sense.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000633/pdfft?md5=306cc05c455de6efb9f908455c6f3128&pid=1-s2.0-S0885064X24000633-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000633","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fourier phase retrieval, which aims to reconstruct a signal from its Fourier magnitude, is of fundamental importance in fields of engineering and science. In this paper, we provide a theoretical understanding of algorithms for the one-dimensional Fourier phase retrieval problem. Specifically, we demonstrate that if an algorithm exists which can reconstruct an arbitrary signal in time to reach ϵ-precision from its magnitude of discrete Fourier transform and its initial value , then . This partially elucidates the phenomenon that, despite the fact that almost all signals are uniquely determined by their Fourier magnitude and the absolute value of their initial value , no algorithm with theoretical guarantees has been proposed in the last few decades. Our proofs employ the result in computational complexity theory that the Product Partition problem is NP-complete in the strong sense.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.