Modelling non-stationarity in asymptotically independent extremes

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C.J.R. Murphy-Barltrop , J.L. Wadsworth
{"title":"Modelling non-stationarity in asymptotically independent extremes","authors":"C.J.R. Murphy-Barltrop ,&nbsp;J.L. Wadsworth","doi":"10.1016/j.csda.2024.108025","DOIUrl":null,"url":null,"abstract":"<div><p>In many practical applications, evaluating the joint impact of combinations of environmental variables is important for risk management and structural design analysis. When such variables are considered simultaneously, non-stationarity can exist within both the marginal distributions and dependence structure, resulting in complex data structures. In the context of extremes, few methods have been proposed for modelling trends in extremal dependence, even though capturing this feature is important for quantifying joint impact. Moreover, most proposed techniques are only applicable to data structures exhibiting asymptotic dependence. Motivated by observed dependence trends of data from the UK Climate Projections, a novel semi-parametric modelling framework for bivariate extremal dependence structures is proposed. This framework can capture a wide variety of dependence trends for data exhibiting asymptotic independence. When applied to the climate projection dataset, the model detects significant dependence trends in observations and, in combination with models for marginal non-stationarity, can be used to produce estimates of bivariate risk measures at future time points.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001099/pdfft?md5=30bf72d73c4164fa1e95447a8e89f109&pid=1-s2.0-S0167947324001099-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001099","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In many practical applications, evaluating the joint impact of combinations of environmental variables is important for risk management and structural design analysis. When such variables are considered simultaneously, non-stationarity can exist within both the marginal distributions and dependence structure, resulting in complex data structures. In the context of extremes, few methods have been proposed for modelling trends in extremal dependence, even though capturing this feature is important for quantifying joint impact. Moreover, most proposed techniques are only applicable to data structures exhibiting asymptotic dependence. Motivated by observed dependence trends of data from the UK Climate Projections, a novel semi-parametric modelling framework for bivariate extremal dependence structures is proposed. This framework can capture a wide variety of dependence trends for data exhibiting asymptotic independence. When applied to the climate projection dataset, the model detects significant dependence trends in observations and, in combination with models for marginal non-stationarity, can be used to produce estimates of bivariate risk measures at future time points.

渐近独立极值的非稳态建模
在许多实际应用中,评估环境变量组合的共同影响对于风险管理和结构设计分析非常重要。当同时考虑这些变量时,边际分布和依赖结构中都可能存在非平稳性,从而导致复杂的数据结构。在极端情况下,尽管捕捉极端依赖性的趋势对于量化联合影响非常重要,但很少有方法可以用于模拟极端依赖性的趋势。此外,大多数建议的技术只适用于表现出渐进依赖性的数据结构。受英国气候预测中观测到的数据依赖趋势的启发,我们提出了一种新颖的双变量极端依赖结构半参数建模框架。该框架可以捕捉数据渐近独立性的各种依赖趋势。当应用于气候预测数据集时,该模型可检测到观测数据中的显著依赖趋势,并与边际非平稳性模型相结合,可用于生成未来时间点的二元风险度量估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信