{"title":"Modelling non-stationarity in asymptotically independent extremes","authors":"C.J.R. Murphy-Barltrop , J.L. Wadsworth","doi":"10.1016/j.csda.2024.108025","DOIUrl":null,"url":null,"abstract":"<div><p>In many practical applications, evaluating the joint impact of combinations of environmental variables is important for risk management and structural design analysis. When such variables are considered simultaneously, non-stationarity can exist within both the marginal distributions and dependence structure, resulting in complex data structures. In the context of extremes, few methods have been proposed for modelling trends in extremal dependence, even though capturing this feature is important for quantifying joint impact. Moreover, most proposed techniques are only applicable to data structures exhibiting asymptotic dependence. Motivated by observed dependence trends of data from the UK Climate Projections, a novel semi-parametric modelling framework for bivariate extremal dependence structures is proposed. This framework can capture a wide variety of dependence trends for data exhibiting asymptotic independence. When applied to the climate projection dataset, the model detects significant dependence trends in observations and, in combination with models for marginal non-stationarity, can be used to produce estimates of bivariate risk measures at future time points.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001099/pdfft?md5=30bf72d73c4164fa1e95447a8e89f109&pid=1-s2.0-S0167947324001099-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001099","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In many practical applications, evaluating the joint impact of combinations of environmental variables is important for risk management and structural design analysis. When such variables are considered simultaneously, non-stationarity can exist within both the marginal distributions and dependence structure, resulting in complex data structures. In the context of extremes, few methods have been proposed for modelling trends in extremal dependence, even though capturing this feature is important for quantifying joint impact. Moreover, most proposed techniques are only applicable to data structures exhibiting asymptotic dependence. Motivated by observed dependence trends of data from the UK Climate Projections, a novel semi-parametric modelling framework for bivariate extremal dependence structures is proposed. This framework can capture a wide variety of dependence trends for data exhibiting asymptotic independence. When applied to the climate projection dataset, the model detects significant dependence trends in observations and, in combination with models for marginal non-stationarity, can be used to produce estimates of bivariate risk measures at future time points.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.