J. Winston Arney , Alain Laederach , Kevin M. Weeks
{"title":"Visualizing RNA structure ensembles by single-molecule correlated chemical probing","authors":"J. Winston Arney , Alain Laederach , Kevin M. Weeks","doi":"10.1016/j.sbi.2024.102877","DOIUrl":null,"url":null,"abstract":"<div><p>RNA molecules fold to form complex internal structures. Many of these RNA structures populate ensembles with rheostat-like properties, with each state having a distinct function. Until recently, analysis of RNA structures, especially within cells, was limited to modeling either a single averaged structure or computationally-modeled ensembles. These approaches obscure the intrinsic heterogeneity of many structured RNAs. Single-molecule correlated chemical probing (smCCP) strategies are now making it possible to measure and deconvolute RNA structure ensembles based on efficiently executed chemical probing experiments. Here, we provide an overview of fundamental single-molecule probing principles, review current ensemble deconvolution strategies, and discuss recent applications to diverse biological systems. smCCP is enabling a revolution in understanding how the plasticity of RNA structure is exploited in biological systems to respond to stimuli and alter gene function. The energetics of RNA ensembles are often subtle and a subset can likely be targeted to modulate disease-associated biological processes.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"88 ","pages":"Article 102877"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24001040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA molecules fold to form complex internal structures. Many of these RNA structures populate ensembles with rheostat-like properties, with each state having a distinct function. Until recently, analysis of RNA structures, especially within cells, was limited to modeling either a single averaged structure or computationally-modeled ensembles. These approaches obscure the intrinsic heterogeneity of many structured RNAs. Single-molecule correlated chemical probing (smCCP) strategies are now making it possible to measure and deconvolute RNA structure ensembles based on efficiently executed chemical probing experiments. Here, we provide an overview of fundamental single-molecule probing principles, review current ensemble deconvolution strategies, and discuss recent applications to diverse biological systems. smCCP is enabling a revolution in understanding how the plasticity of RNA structure is exploited in biological systems to respond to stimuli and alter gene function. The energetics of RNA ensembles are often subtle and a subset can likely be targeted to modulate disease-associated biological processes.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation