Molecular basis of phenotypic plasticity in a marine ciliate.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Jiao Pan, Yaohai Wang, Chao Li, Simo Zhang, Zhiqiang Ye, Jiahao Ni, Haichao Li, Yichen Li, Hongwei Yue, Chenchen Ruan, Dange Zhao, Yujian Jiang, Xiaolin Wu, Xiaopeng Shen, Rebecca A Zufall, Yu Zhang, Weiyi Li, Michael Lynch, Hongan Long
{"title":"Molecular basis of phenotypic plasticity in a marine ciliate.","authors":"Jiao Pan, Yaohai Wang, Chao Li, Simo Zhang, Zhiqiang Ye, Jiahao Ni, Haichao Li, Yichen Li, Hongwei Yue, Chenchen Ruan, Dange Zhao, Yujian Jiang, Xiaolin Wu, Xiaopeng Shen, Rebecca A Zufall, Yu Zhang, Weiyi Li, Michael Lynch, Hongan Long","doi":"10.1093/ismejo/wrae136","DOIUrl":null,"url":null,"abstract":"<p><p>Phenotypic plasticity, which involves phenotypic transformation in the absence of genetic change, may serve as a strategy for organisms to survive in complex and highly fluctuating environments. However, its reaction norm, molecular basis, and evolution remain unclear in most organisms, especially microbial eukaryotes. In this study, we explored these questions by investigating the reaction norm, regulation, and evolution of phenotypic plasticity in the cosmopolitan marine free-living ciliates Glauconema spp., which undergo significant phenotypic changes in response to food shortages. This study led to the de novo assembly of macronuclear genomes using long-read sequencing, identified hundreds of differentially expressed genes associated with phenotypic plasticity in different life stages, validated the function of two of these genes, and revealed that the reaction norm of body shape in response to food density follows a power-law distribution. Purifying selection may be the dominant evolutionary force acting on the genes associated with phenotypic plasticity, and the overall data support the hypothesis that phenotypic plasticity is a trait maintained by natural selection. This study provides novel insight into the developmental genetics of phenotypic plasticity in non-model unicellular eukaryotes and sheds light on the complexity and long evolutionary history of this important survival strategy.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae136","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phenotypic plasticity, which involves phenotypic transformation in the absence of genetic change, may serve as a strategy for organisms to survive in complex and highly fluctuating environments. However, its reaction norm, molecular basis, and evolution remain unclear in most organisms, especially microbial eukaryotes. In this study, we explored these questions by investigating the reaction norm, regulation, and evolution of phenotypic plasticity in the cosmopolitan marine free-living ciliates Glauconema spp., which undergo significant phenotypic changes in response to food shortages. This study led to the de novo assembly of macronuclear genomes using long-read sequencing, identified hundreds of differentially expressed genes associated with phenotypic plasticity in different life stages, validated the function of two of these genes, and revealed that the reaction norm of body shape in response to food density follows a power-law distribution. Purifying selection may be the dominant evolutionary force acting on the genes associated with phenotypic plasticity, and the overall data support the hypothesis that phenotypic plasticity is a trait maintained by natural selection. This study provides novel insight into the developmental genetics of phenotypic plasticity in non-model unicellular eukaryotes and sheds light on the complexity and long evolutionary history of this important survival strategy.

海洋纤毛虫表型可塑性的分子基础
表型可塑性是指在没有基因变化的情况下发生表型转变,它可能是生物在复杂多变的环境中生存的一种策略。然而,在大多数生物,尤其是微生物真核生物中,表型可塑性的反应规范、分子基础和进化仍不清楚。在本研究中,我们通过研究世界性海洋自由生活纤毛虫 Glauconema spp.的表型可塑性的反应规范、调控和进化来探索这些问题。这项研究利用长线程测序技术重新组装了大核基因组,鉴定了数百个与不同生命阶段表型可塑性相关的差异表达基因,验证了其中两个基因的功能,并揭示了体形对食物密度的反应标准遵循幂律分布。净化选择可能是作用于表型可塑性相关基因的主要进化力量,总体数据支持表型可塑性是自然选择维持的性状这一假说。这项研究为非模式单细胞真核生物表型可塑性的发育遗传学提供了新的见解,并揭示了这一重要生存策略的复杂性和漫长的进化历史。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信