Dual residence time for droplets to coalesce with a liquid surface.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Ting-Heng Hsieh, Wei-Chi Li, Tzay-Ming Hong
{"title":"Dual residence time for droplets to coalesce with a liquid surface.","authors":"Ting-Heng Hsieh, Wei-Chi Li, Tzay-Ming Hong","doi":"10.1103/PhysRevE.109.065109","DOIUrl":null,"url":null,"abstract":"<p><p>When droplets approach a liquid surface, they have a tendency to merge in order to minimize surface energy. However, under certain conditions, they can exhibit a phenomenon called coalescence delay, where they remain separate for tens of milliseconds. This duration is known as the residence time or the noncoalescence time. Surprisingly, under identical parameters and initial conditions, the residence time for water droplets is not a constant value but exhibits dual peaks in its distribution. In this paper, we present the observation of the dual residence times through rigorous statistical analysis and investigate the quantitative variations in residence time by manipulating parameters such as droplet height, radius, and viscosity. Theoretical models and physical arguments are provided to explain their effects, particularly why a large viscosity or/and a small radius is detrimental to the appearance of the longer residence time peak.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.109.065109","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

When droplets approach a liquid surface, they have a tendency to merge in order to minimize surface energy. However, under certain conditions, they can exhibit a phenomenon called coalescence delay, where they remain separate for tens of milliseconds. This duration is known as the residence time or the noncoalescence time. Surprisingly, under identical parameters and initial conditions, the residence time for water droplets is not a constant value but exhibits dual peaks in its distribution. In this paper, we present the observation of the dual residence times through rigorous statistical analysis and investigate the quantitative variations in residence time by manipulating parameters such as droplet height, radius, and viscosity. Theoretical models and physical arguments are provided to explain their effects, particularly why a large viscosity or/and a small radius is detrimental to the appearance of the longer residence time peak.

液滴与液体表面凝聚的双重停留时间。
当液滴接近液体表面时,它们倾向于合并,以尽量减少表面能量。然而,在某些条件下,液滴会表现出一种称为凝聚延迟的现象,在这种情况下,液滴会在数十毫秒内保持分离。这种持续时间被称为停留时间或非凝聚时间。令人惊讶的是,在相同的参数和初始条件下,水滴的停留时间并不是一个恒定值,而是呈现双峰分布。在本文中,我们通过严谨的统计分析提出了双重停留时间的观测结果,并研究了通过操纵水滴高度、半径和粘度等参数对停留时间的定量变化。本文提供了理论模型和物理论据来解释它们的影响,特别是为什么大的粘度或/和小的半径不利于出现较长的停留时间峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信