Sivakumar Sudarsanan, Amitesh Roy, Induja Pavithran, Shruti Tandon, R I Sujith
{"title":"Emergence of order from chaos through a continuous phase transition in a turbulent reactive flow system.","authors":"Sivakumar Sudarsanan, Amitesh Roy, Induja Pavithran, Shruti Tandon, R I Sujith","doi":"10.1103/PhysRevE.109.064214","DOIUrl":null,"url":null,"abstract":"<p><p>As the Reynolds number is increased, a laminar fluid flow becomes turbulent, and the range of time and length scales associated with the flow increases. Yet, in a turbulent reactive flow system, as we increase the Reynolds number, we observe the emergence of a single dominant timescale in the acoustic pressure fluctuations, as indicated by its loss of multifractality. Such emergence of order from chaos is intriguing. We perform experiments in a turbulent reactive flow system consisting of flame, acoustic, and hydrodynamic subsystems interacting nonlinearly. We study the evolution of short-time correlated dynamics between the acoustic field and the flame in the spatiotemporal domain of the system. The order parameter, defined as the fraction of the correlated dynamics, increases gradually from zero to one. We find that the susceptibility of the order parameter, correlation length, and correlation time diverge at a critical point between chaos and order. Our results show that the observed emergence of order from chaos is a continuous phase transition. Moreover, we provide experimental evidence that the critical exponents characterizing this transition fall in the universality class of directed percolation. Our paper demonstrates how a real-world complex, nonequilibrium turbulent reactive flow system exhibits universal behavior near a critical point.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.109.064214","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
As the Reynolds number is increased, a laminar fluid flow becomes turbulent, and the range of time and length scales associated with the flow increases. Yet, in a turbulent reactive flow system, as we increase the Reynolds number, we observe the emergence of a single dominant timescale in the acoustic pressure fluctuations, as indicated by its loss of multifractality. Such emergence of order from chaos is intriguing. We perform experiments in a turbulent reactive flow system consisting of flame, acoustic, and hydrodynamic subsystems interacting nonlinearly. We study the evolution of short-time correlated dynamics between the acoustic field and the flame in the spatiotemporal domain of the system. The order parameter, defined as the fraction of the correlated dynamics, increases gradually from zero to one. We find that the susceptibility of the order parameter, correlation length, and correlation time diverge at a critical point between chaos and order. Our results show that the observed emergence of order from chaos is a continuous phase transition. Moreover, we provide experimental evidence that the critical exponents characterizing this transition fall in the universality class of directed percolation. Our paper demonstrates how a real-world complex, nonequilibrium turbulent reactive flow system exhibits universal behavior near a critical point.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.