{"title":"Urinary metabolomics reveals potential biomarkers for early detection of pregnancy in Mithun (Bos frontalis) cows","authors":"Suman Sangwan , R. Vikram , Ekta Hooda , Renu Choudhary , Jyoti Jawla , Y.M. Somagond , Sunesh Balhara , S.K. Phulia , M.H. Khan , P.S. Girish , T.K. Datta , A. Mitra , A.K. Balhara","doi":"10.1016/j.jprot.2024.105259","DOIUrl":null,"url":null,"abstract":"<div><p>The present study investigated the urinary metabolic profiles of early pregnant and non-pregnant Mithun to identify potential pregnancy detection biomarkers. Urine samples were collected on days 0, 10, 18, 35 and 45 of gestation from pregnant (<em>n</em> = 6) and on days 0, 10 and 18 from non-pregnant (n = 6) Mithun. Urinary metabolites were assessed using proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectroscopy and identified 270 metabolites. Statistical analyses demonstrated pronounced distinctions in metabolite profiles between pregnant and non-pregnant samples. Twenty-five metabolites that could discriminate between pregnant and non-pregnant Mithun based on Variable Importance in Projection (VIP) scores >1 were identified. Upon further examination of six metabolites (kynurenine, kynurenate, 3-hydroxykynurenine, quinolinate, tyrosine and leucine) identified with high VIP scores, ROC curve analyses demonstrated their significant predictive potential, with AUC values ranging between 0.50 and 0.85. Additionally, a combined panel of top 25 metabolites yielded an AUC value of 0.85. Pathway analysis identified seven potential metabolic pathway modulations during early gestation, with particular emphasis on phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan pathway and pathways involved in the metabolism of various amino acids. In conclusion, kynurenine, kynurenate, 3-hydroxykynurenine, quinolinate, tyrosine, and leucine show promise as non-invasive urinary biomarkers for early pregnancy detection in Mithun.</p></div><div><h3>Significance</h3><p>This study presents the first report on the metabolic profile of urine from early pregnant and non-pregnant Mithun (<em>Bos frontalis</em>). The metabolites like <strong>kynurenine</strong> and its derivatives <strong>(kynurenate, 3-hydroxykynurenine and quinolinate)</strong>, <strong>tyrosine and leucine</strong> were documented signature urinary metabolites associated with early pregnancy in Mithun. The identified combination of metabolites holds promise as predictive biomarkers for non-invasive urinary-based early pregnancy diagnostics in Mithun. In addition, this study identified changes in metabolic pathways that involve phenylalanine, tyrosine, tryptophan and related amino acids and biomarkers identified were either precursors or products within these metabolic pathways.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187439192400191X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigated the urinary metabolic profiles of early pregnant and non-pregnant Mithun to identify potential pregnancy detection biomarkers. Urine samples were collected on days 0, 10, 18, 35 and 45 of gestation from pregnant (n = 6) and on days 0, 10 and 18 from non-pregnant (n = 6) Mithun. Urinary metabolites were assessed using proton nuclear magnetic resonance (1H NMR) spectroscopy and identified 270 metabolites. Statistical analyses demonstrated pronounced distinctions in metabolite profiles between pregnant and non-pregnant samples. Twenty-five metabolites that could discriminate between pregnant and non-pregnant Mithun based on Variable Importance in Projection (VIP) scores >1 were identified. Upon further examination of six metabolites (kynurenine, kynurenate, 3-hydroxykynurenine, quinolinate, tyrosine and leucine) identified with high VIP scores, ROC curve analyses demonstrated their significant predictive potential, with AUC values ranging between 0.50 and 0.85. Additionally, a combined panel of top 25 metabolites yielded an AUC value of 0.85. Pathway analysis identified seven potential metabolic pathway modulations during early gestation, with particular emphasis on phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan pathway and pathways involved in the metabolism of various amino acids. In conclusion, kynurenine, kynurenate, 3-hydroxykynurenine, quinolinate, tyrosine, and leucine show promise as non-invasive urinary biomarkers for early pregnancy detection in Mithun.
Significance
This study presents the first report on the metabolic profile of urine from early pregnant and non-pregnant Mithun (Bos frontalis). The metabolites like kynurenine and its derivatives (kynurenate, 3-hydroxykynurenine and quinolinate), tyrosine and leucine were documented signature urinary metabolites associated with early pregnancy in Mithun. The identified combination of metabolites holds promise as predictive biomarkers for non-invasive urinary-based early pregnancy diagnostics in Mithun. In addition, this study identified changes in metabolic pathways that involve phenylalanine, tyrosine, tryptophan and related amino acids and biomarkers identified were either precursors or products within these metabolic pathways.