An analysis of the gaps in the South African DNA barcoding library of ticks of veterinary and public health importance.

IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Genome Pub Date : 2024-11-01 Epub Date: 2024-07-17 DOI:10.1139/gen-2024-0052
Nozipho Khumalo, Mamohale Chaisi, Rebecca Magoro, Monica Mwale
{"title":"An analysis of the gaps in the South African DNA barcoding library of ticks of veterinary and public health importance.","authors":"Nozipho Khumalo, Mamohale Chaisi, Rebecca Magoro, Monica Mwale","doi":"10.1139/gen-2024-0052","DOIUrl":null,"url":null,"abstract":"<p><p>Ticks transmit pathogens of veterinary and public health importance. Understanding their diversity is critical as infestations lead to significant economic losses globally. To date, over 90 species across three families have been identified in South Africa. However, the taxonomy of most species has not been resolved due to morphological identification challenges. DNA barcoding through the Barcode of Life Data Systems (BOLD) is therefore a valuable tool for species verifications for biodiversity assessments. This study conducted an analysis of South African tick <i>COI</i> barcodes on BOLD by verifying species on checklists, literature, and other sequence databases. The compiled list represented 97 species, including indigenous (59), endemics (27), introduced (2), invasives (1), and eight that could not be classified. Analyses indicated that 31 species (32%) from 11 genera have verified <i>COI</i> barcodes. These are distributed across all nine provinces with the Eastern Cape having the highest species diversity, followed by Limpopo, with KwaZulu-Natal having the least diversity. <i>Rhipicephalus, Hyalomma</i>, and <i>Argas</i> species had multiple barcode index numbers, suggesting cryptic diversity or unresolved taxonomy. We identified 21 species of veterinary or zoonotic importance from the Argasidae and Ixodidae families that should be prioritised for barcoding. Coordinating studies and defining barcoding targets is necessary to ensure that tick checklists are updated to support decision-making for the control of vector-borne diseases and alien invasives.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"392-402"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2024-0052","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ticks transmit pathogens of veterinary and public health importance. Understanding their diversity is critical as infestations lead to significant economic losses globally. To date, over 90 species across three families have been identified in South Africa. However, the taxonomy of most species has not been resolved due to morphological identification challenges. DNA barcoding through the Barcode of Life Data Systems (BOLD) is therefore a valuable tool for species verifications for biodiversity assessments. This study conducted an analysis of South African tick COI barcodes on BOLD by verifying species on checklists, literature, and other sequence databases. The compiled list represented 97 species, including indigenous (59), endemics (27), introduced (2), invasives (1), and eight that could not be classified. Analyses indicated that 31 species (32%) from 11 genera have verified COI barcodes. These are distributed across all nine provinces with the Eastern Cape having the highest species diversity, followed by Limpopo, with KwaZulu-Natal having the least diversity. Rhipicephalus, Hyalomma, and Argas species had multiple barcode index numbers, suggesting cryptic diversity or unresolved taxonomy. We identified 21 species of veterinary or zoonotic importance from the Argasidae and Ixodidae families that should be prioritised for barcoding. Coordinating studies and defining barcoding targets is necessary to ensure that tick checklists are updated to support decision-making for the control of vector-borne diseases and alien invasives.

分析南非兽医和公共卫生重要蜱虫 DNA 条形码库中的空白。
蜱虫传播对兽医和公共卫生具有重要意义的病原体。了解蜱虫的多样性至关重要,因为蜱虫侵扰会给全球造成重大经济损失。南非已发现三个科约 90 多个物种。然而,由于形态鉴定方面的困难,大多数物种的分类尚未得到解决。因此,通过生命条形码数据系统(BOLD)进行 DNA 条形编码是生物多样性评估中物种验证的重要工具。本研究通过核查核对表、文献和其他序列数据库中的物种,对 BOLD 上的南非蜱 COI 条形码进行了分析。编制的清单上有 97 个物种,包括本土物种(59 个)、特有物种(27 个)、引进物种(2 个)、入侵物种(1 个)和 8 个无法分类的物种。分析表明,11 个属的 31 个物种(32%)已验证了 COI 条形码。这些物种分布在所有九个省份,其中东开普省的物种多样性最高,其次是林波波省,夸祖鲁-纳塔尔省的物种多样性最低。Rhipicephalus、Hyalomma和Argas物种有多个条形码索引号(BINs),这表明存在隐性多样性或未解决的分类问题。我们从 Argasidae 和 Ixodidae 科中确定了 21 个具有兽医或人畜共患病重要性的物种,这些物种应优先进行条形码编码。有必要协调研究工作并确定条形码目标,以确保更新蜱虫检查列表,为控制病媒传播疾病和外来入侵生物的决策提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome
Genome 生物-生物工程与应用微生物
CiteScore
5.30
自引率
3.20%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信