Kinetic characterization of the C-terminal domain of Malonyl-CoA reductase

IF 2.5 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mirela Tkalcic Cavuzic (Tkalčić Čavužić) , Amanda Silva de Sousa , Jeremy R. Lohman , Grover L. Waldrop
{"title":"Kinetic characterization of the C-terminal domain of Malonyl-CoA reductase","authors":"Mirela Tkalcic Cavuzic (Tkalčić Čavužić) ,&nbsp;Amanda Silva de Sousa ,&nbsp;Jeremy R. Lohman ,&nbsp;Grover L. Waldrop","doi":"10.1016/j.bbapap.2024.141033","DOIUrl":null,"url":null,"abstract":"<div><p>Malonyl-CoA reductase utilizes two equivalents of NADPH to catalyze the reduction of malonyl-CoA to 3-hydroxypropionic acid (3HP). This reaction is part of the carbon fixation pathway in the phototrophic bacterium <em>Chloroflexus aurantiacus</em>. The enzyme is composed of two domains. The C-terminal domain catalyzes the reduction of malonyl-CoA to malonic semialdehyde, while the N-terminal domain catalyzes the reduction of the aldehyde to 3HP. The two domains can be produced independently and retain their enzymatic activity. This report focuses on the kinetic characterization of the C-terminal domain. Initial velocity patterns and inhibition studies showed the kinetic mechanism is ordered with NADPH binding first followed by malonyl-CoA. Malonic semialdehyde is released first, while CoA and NADP<sup>+</sup> are released randomly. Analogs of malonyl-CoA showed that the thioester carbon is reduced, while the carboxyl group is needed for proper positioning. The enzyme transfers the pro-<em>S</em> hydrogen of NADPH to malonyl-CoA and pH rate profiles revealed that a residue with a pK<sub>a</sub> value of about 8.8 must be protonated for activity. Kinetic isotope effects indicated that NADPH is not sticky (that is, NADPH dissociates from the enzyme faster than the rate of product formation) and product release is partially rate-limiting. Moreover, the mechanism is stepwise with the pH dependent step occurring before or after hydride transfer. The findings from this study will aid in the development of an eco-friendly biosynthesis of 3HP which is an industrial chemical used in the production of plastics and adhesives.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963924000402","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Malonyl-CoA reductase utilizes two equivalents of NADPH to catalyze the reduction of malonyl-CoA to 3-hydroxypropionic acid (3HP). This reaction is part of the carbon fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. The enzyme is composed of two domains. The C-terminal domain catalyzes the reduction of malonyl-CoA to malonic semialdehyde, while the N-terminal domain catalyzes the reduction of the aldehyde to 3HP. The two domains can be produced independently and retain their enzymatic activity. This report focuses on the kinetic characterization of the C-terminal domain. Initial velocity patterns and inhibition studies showed the kinetic mechanism is ordered with NADPH binding first followed by malonyl-CoA. Malonic semialdehyde is released first, while CoA and NADP+ are released randomly. Analogs of malonyl-CoA showed that the thioester carbon is reduced, while the carboxyl group is needed for proper positioning. The enzyme transfers the pro-S hydrogen of NADPH to malonyl-CoA and pH rate profiles revealed that a residue with a pKa value of about 8.8 must be protonated for activity. Kinetic isotope effects indicated that NADPH is not sticky (that is, NADPH dissociates from the enzyme faster than the rate of product formation) and product release is partially rate-limiting. Moreover, the mechanism is stepwise with the pH dependent step occurring before or after hydride transfer. The findings from this study will aid in the development of an eco-friendly biosynthesis of 3HP which is an industrial chemical used in the production of plastics and adhesives.

丙二酰-CoA 还原酶 C 端结构域的动力学特征。
丙二酰-CoA 还原酶利用两当量的 NADPH 催化丙二酰-CoA 还原成 3-羟基丙酸(3HP)。该反应是光营养细菌 Chloroflexus aurantiacus 碳固定途径的一部分。该酶由两个结构域组成。C 端结构域催化丙二酰-CoA 还原成丙二酸半醛,而 N 端结构域催化醛还原成 3HP。这两个结构域可以独立产生,并保持其酶活性。本报告主要介绍 C 端结构域的动力学特征。最初的速度模式和抑制研究表明,动力学机制是有序的,NADPH 首先结合,然后是丙二酰-CoA。丙二酰半醛首先释放,而 CoA 和 NADP+ 则随机释放。丙二酰-CoA 的类似物表明,硫酯碳被还原,而羧基则需要正确定位。该酶将 NADPH 的原-S 氢转移到丙二酰-CoA 上,pH 值速率曲线显示,pKa 值约为 8.8 的残基必须质子化才有活性。动力学同位素效应表明,NADPH 不具有粘性(即 NADPH 从酶中解离的速度快于产物形成的速度),而产物的释放部分限制了速率。此外,该机制是逐步进行的,与 pH 值有关的步骤发生在氢化物转移之前或之后。3HP 是一种用于生产塑料和粘合剂的工业化学品,本研究的发现将有助于开发 3HP 的生态友好型生物合成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
55
审稿时长
33 days
期刊介绍: BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信