Entropic distinguishability of quantum fields in phase space

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-07-17 DOI:10.22331/q-2024-07-17-1414
Sara Ditsch, Tobias Haas
{"title":"Entropic distinguishability of quantum fields in phase space","authors":"Sara Ditsch, Tobias Haas","doi":"10.22331/q-2024-07-17-1414","DOIUrl":null,"url":null,"abstract":"We present a general way of quantifying the entropic uncertainty of quantum field configurations in phase space in terms of entropic distinguishability with respect to the vacuum. Our approach is based on the functional Husimi $Q$-distribution and a suitably chosen relative entropy, which we show to be non-trivially bounded from above by the uncertainty principle. The resulting relative entropic uncertainty relation is as general as the concept of coherent states and thus holds for quantum fields of bosonic and fermionic type. Its simple form enables diverse applications, among which we present a complete characterization of the uncertainty surplus of arbitrary states in terms of the total particle number for a scalar field and the fermionic description of the Ising model. Moreover, we provide a quantitative interpretation of the role of the uncertainty principle for quantum phase transitions.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-07-17-1414","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a general way of quantifying the entropic uncertainty of quantum field configurations in phase space in terms of entropic distinguishability with respect to the vacuum. Our approach is based on the functional Husimi $Q$-distribution and a suitably chosen relative entropy, which we show to be non-trivially bounded from above by the uncertainty principle. The resulting relative entropic uncertainty relation is as general as the concept of coherent states and thus holds for quantum fields of bosonic and fermionic type. Its simple form enables diverse applications, among which we present a complete characterization of the uncertainty surplus of arbitrary states in terms of the total particle number for a scalar field and the fermionic description of the Ising model. Moreover, we provide a quantitative interpretation of the role of the uncertainty principle for quantum phase transitions.
相空间量子场的熵可区分性
我们提出了一种用相对于真空的熵可区分性来量化相空间量子场构型的熵不确定性的一般方法。我们的方法基于函数 Husimi $Q$ 分布和适当选择的相对熵,我们证明相对熵从上至下都受到不确定性原理的非三维约束。由此产生的相对熵不确定性关系与相干态概念一样普遍,因此适用于玻色和费米子类型的量子场。它的简单形式使得它可以有多种应用,其中我们以标量场和费米子描述的伊辛模型的总粒子数为基础,完整地描述了任意状态的不确定性盈余。此外,我们还对不确定性原理在量子相变中的作用进行了定量解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信