{"title":"An Interpretable Siamese Attention Res-CNN for Fingerprint Spoofing Detection","authors":"Chengsheng Yuan, Zhenyu Xu, Xinting Li, Zhili Zhou, Junhao Huang, Ping Guo","doi":"10.1049/2024/6630173","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In recent years, fingerprint authentication has gained widespread adoption in diverse identification systems, including smartphones, wearable devices, and attendance machines, etc. Nonetheless, these systems are vulnerable to spoofing attacks from suspicious fingerprints, posing significant risks to privacy. Consequently, a fingerprint presentation attack detection (PAD) strategy is proposed to ensure the security of these systems. Most of the previous work concentrated on how to build a deep learning framework to improve the PAD performance by augmenting fingerprint samples, and little attention has been paid to the fundamental difference between live and fake fingerprints to optimize feature extractors. This paper proposes a new fingerprint liveness detection method based on Siamese attention residual convolutional neural network (Res-CNN) that offers an interpretative perspective to this challenge. To leverage the variance in ridge continuity features (RCFs) between live and fake fingerprints, a Gabor filter is utilized to enhance the texture details of the fingerprint ridges, followed by the construction of an attention Res-CNN model to extract RCF between the live and fake fingerprints. The model mitigates the performance deterioration caused by gradient disappearance. Furthermore, to highlight the difference in RCF, a Siamese attention residual network is devised, and the ridge continuity amplification loss function is designed to optimize the training process. Ultimately, the RCF parameters are transferred to the model, and transfer learning is utilized to aid its acquisition, thereby assuring the model’s interpretability. The experimental outcomes conducted on three publicly accessible fingerprint datasets demonstrate the superiority of the proposed method, exhibiting remarkable performance in both true detection rate and average classification error rate. Moreover, our method exhibits remarkable capabilities in PAD tasks, including cross-material experiments and cross-sensor experiments. Additionally, we leverage Gradient-weighted Class Activation Mapping to generate a heatmap that visualizes the interpretability of our model, offering a compelling visual validation.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2024 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6630173","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6630173","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, fingerprint authentication has gained widespread adoption in diverse identification systems, including smartphones, wearable devices, and attendance machines, etc. Nonetheless, these systems are vulnerable to spoofing attacks from suspicious fingerprints, posing significant risks to privacy. Consequently, a fingerprint presentation attack detection (PAD) strategy is proposed to ensure the security of these systems. Most of the previous work concentrated on how to build a deep learning framework to improve the PAD performance by augmenting fingerprint samples, and little attention has been paid to the fundamental difference between live and fake fingerprints to optimize feature extractors. This paper proposes a new fingerprint liveness detection method based on Siamese attention residual convolutional neural network (Res-CNN) that offers an interpretative perspective to this challenge. To leverage the variance in ridge continuity features (RCFs) between live and fake fingerprints, a Gabor filter is utilized to enhance the texture details of the fingerprint ridges, followed by the construction of an attention Res-CNN model to extract RCF between the live and fake fingerprints. The model mitigates the performance deterioration caused by gradient disappearance. Furthermore, to highlight the difference in RCF, a Siamese attention residual network is devised, and the ridge continuity amplification loss function is designed to optimize the training process. Ultimately, the RCF parameters are transferred to the model, and transfer learning is utilized to aid its acquisition, thereby assuring the model’s interpretability. The experimental outcomes conducted on three publicly accessible fingerprint datasets demonstrate the superiority of the proposed method, exhibiting remarkable performance in both true detection rate and average classification error rate. Moreover, our method exhibits remarkable capabilities in PAD tasks, including cross-material experiments and cross-sensor experiments. Additionally, we leverage Gradient-weighted Class Activation Mapping to generate a heatmap that visualizes the interpretability of our model, offering a compelling visual validation.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues