Double penalized variable selection for high-dimensional partial linear mixed effects models

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Yiping Yang, Chuanqin Luo, Weiming Yang
{"title":"Double penalized variable selection for high-dimensional partial linear mixed effects models","authors":"Yiping Yang,&nbsp;Chuanqin Luo,&nbsp;Weiming Yang","doi":"10.1016/j.jmva.2024.105345","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we address the selection of both fixed and random effects in partial linear mixed effects models. By combining B-spline and QR decomposition techniques, we propose a double-penalized likelihood procedure for both estimating and selecting these effects. Furthermore, we introduce an orthogonality-based method to estimate the non-parametric component, ensuring that the fixed and random effects are separated without any mutual interference. The asymptotic properties of the resulting estimators are investigated under mild conditions. Simulation studies are conducted to evaluate the finite sample performance of the proposed method. Finally, we demonstrate the practical applicability of our methodology by analyzing a real data.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000526","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we address the selection of both fixed and random effects in partial linear mixed effects models. By combining B-spline and QR decomposition techniques, we propose a double-penalized likelihood procedure for both estimating and selecting these effects. Furthermore, we introduce an orthogonality-based method to estimate the non-parametric component, ensuring that the fixed and random effects are separated without any mutual interference. The asymptotic properties of the resulting estimators are investigated under mild conditions. Simulation studies are conducted to evaluate the finite sample performance of the proposed method. Finally, we demonstrate the practical applicability of our methodology by analyzing a real data.

高维偏线性混合效应模型的双惩罚变量选择
在本研究中,我们探讨了部分线性混合效应模型中固定效应和随机效应的选择问题。通过结合 B-样条曲线和 QR 分解技术,我们提出了一种估计和选择这些效应的双重惩罚似然程序。此外,我们还引入了一种基于正交性的方法来估计非参数成分,确保固定效应和随机效应分离,互不干扰。我们在温和的条件下研究了所得到的估计值的渐近特性。我们还进行了模拟研究,以评估所提方法的有限样本性能。最后,我们通过分析真实数据证明了我们方法的实际应用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信