{"title":"Explaining the decisions and the functioning of a convolutional spatiotemporal land cover classifier with channel attention and redescription mining","authors":"","doi":"10.1016/j.isprsjprs.2024.06.021","DOIUrl":null,"url":null,"abstract":"<div><p>Convolutional neural networks trained with satellite image time series have demonstrated their potential in land cover classification in recent years. Nevertheless, the rationale leading to their decisions remains obscure by nature. Methods for providing relevant and simplified explanations of their decisions as well as methods for understanding their inner functioning have thus emerged. However, both kinds of methods generally work separately and no explicit connection between their findings is made available. This paper presents an innovative method for refining the explanations provided by channel-based attention mechanisms. It consists in identifying correspondence rules between neuronal activation levels and the presence of spatiotemporal patterns in the input data for each channel and target class. These rules provide both class-level and instance-level explanations, as well as an explicit understanding of the network operations. They are extracted using a state-of-the-art redescription mining algorithm. Experiments on the Reunion Island Sentinel-2 dataset show that both correct and incorrect decisions can be explained using convenient spatiotemporal visualizations.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924271624002600/pdfft?md5=d29a61ba9ff8a461eed59ce59e443f04&pid=1-s2.0-S0924271624002600-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624002600","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional neural networks trained with satellite image time series have demonstrated their potential in land cover classification in recent years. Nevertheless, the rationale leading to their decisions remains obscure by nature. Methods for providing relevant and simplified explanations of their decisions as well as methods for understanding their inner functioning have thus emerged. However, both kinds of methods generally work separately and no explicit connection between their findings is made available. This paper presents an innovative method for refining the explanations provided by channel-based attention mechanisms. It consists in identifying correspondence rules between neuronal activation levels and the presence of spatiotemporal patterns in the input data for each channel and target class. These rules provide both class-level and instance-level explanations, as well as an explicit understanding of the network operations. They are extracted using a state-of-the-art redescription mining algorithm. Experiments on the Reunion Island Sentinel-2 dataset show that both correct and incorrect decisions can be explained using convenient spatiotemporal visualizations.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.