An effective U-net model for diagnosing Covid-19 infection

Shirin Kordnoori , Maliheh Sabeti , Hamidreza Mostafaei , Saeed Seyed Agha Banihashemi
{"title":"An effective U-net model for diagnosing Covid-19 infection","authors":"Shirin Kordnoori ,&nbsp;Maliheh Sabeti ,&nbsp;Hamidreza Mostafaei ,&nbsp;Saeed Seyed Agha Banihashemi","doi":"10.1016/j.ibmed.2024.100156","DOIUrl":null,"url":null,"abstract":"<div><p>Coronavirus disease 2019 (COVID-19) has become a pandemic all over the world and has spread rapidly. To distinguish between infected and non-infected areas, there is a critical need for segmentation methods that can identify infected areas from Chest Computed Tomography (CT) scans. In recent years, deep learning has become the most widely used approach for medical image segmentation, including the identification of infected areas in Chest CT scans. We propose an encoder-decoder based on the U-NET architecture for segmenting the MedSeg dataset, which contains lung CT scans. To study the effect of input dimensions on the model's output results, we gave CT images with dimensions of 224 × 224, 256 × 256, and 512 × 512 as inputs to the model. The results showed that 224 × 224 achieved higher results compared to 256 × 256 and 512 × 512, with a <span><math><mrow><mi>d</mi><mi>i</mi><mi>c</mi><msub><mi>e</mi><mrow><mi>c</mi><mi>o</mi><mi>e</mi><mi>f</mi></mrow></msub></mrow></math></span> of 81.36, accuracy of 87.65, sensitivity of 84.71, and specificity of 88.35. Additionally, the 224 × 224 input based on the proposed model achieved the highest number of correct answers compared to previous U-net methods. The proposed model can be applied as an effective screening tool to help primary service staff better refer suspected patients to specialists.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100156"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000231/pdfft?md5=b94ffe85fb10dc2d0a608b570ad4353c&pid=1-s2.0-S2666521224000231-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coronavirus disease 2019 (COVID-19) has become a pandemic all over the world and has spread rapidly. To distinguish between infected and non-infected areas, there is a critical need for segmentation methods that can identify infected areas from Chest Computed Tomography (CT) scans. In recent years, deep learning has become the most widely used approach for medical image segmentation, including the identification of infected areas in Chest CT scans. We propose an encoder-decoder based on the U-NET architecture for segmenting the MedSeg dataset, which contains lung CT scans. To study the effect of input dimensions on the model's output results, we gave CT images with dimensions of 224 × 224, 256 × 256, and 512 × 512 as inputs to the model. The results showed that 224 × 224 achieved higher results compared to 256 × 256 and 512 × 512, with a dicecoef of 81.36, accuracy of 87.65, sensitivity of 84.71, and specificity of 88.35. Additionally, the 224 × 224 input based on the proposed model achieved the highest number of correct answers compared to previous U-net methods. The proposed model can be applied as an effective screening tool to help primary service staff better refer suspected patients to specialists.

Abstract Image

诊断 Covid-19 感染的有效 U 网模型
2019 年冠状病毒病(COVID-19)已成为全球流行病,并迅速蔓延。为了区分感染区和非感染区,亟需能够从胸部计算机断层扫描(CT)中识别感染区的分割方法。近年来,深度学习已成为医学图像分割(包括胸部 CT 扫描中感染区域的识别)中应用最广泛的方法。我们提出了一种基于 U-NET 架构的编码器-解码器,用于分割包含肺部 CT 扫描图像的 MedSeg 数据集。为了研究输入尺寸对模型输出结果的影响,我们将尺寸为 224 × 224、256 × 256 和 512 × 512 的 CT 图像作为模型的输入。结果显示,与 256 × 256 和 512 × 512 相比,224 × 224 获得了更高的结果,双系数为 81.36,准确率为 87.65,灵敏度为 84.71,特异性为 88.35。此外,与之前的 U-net 方法相比,基于所提模型的 224 × 224 输入的正确答案数最多。所提出的模型可作为一种有效的筛查工具,帮助基层服务人员更好地将疑似患者转诊给专科医生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信