Samrita Mondal, Richa Rathor, Som Nath Singh, Geetha Suryakumar
{"title":"miRNA and leptin signaling in metabolic diseases and at extreme environments.","authors":"Samrita Mondal, Richa Rathor, Som Nath Singh, Geetha Suryakumar","doi":"10.1002/prp2.1248","DOIUrl":null,"url":null,"abstract":"<p><p>The burden of growing concern about the dysregulation of metabolic processes arises due to complex interplay between environment and nutrition that has great impact on genetics and epigenetics of an individual. Thereby, any abnormality at the level of food intake regulating hormones may contribute to the development of metabolic diseases in any age group due to malnutrition, overweight, changing lifestyle, and exposure to extreme environments such as heat stress (HS), cold stress, or high altitude (HA). Hormones such as leptin, adiponectin, ghrelin, and cholecystokinin regulate appetite and satiety to maintain energy homeostasis. Leptin, an adipokine and a pleiotropic hormone, play major role in regulating the food intake, energy gain and energy expenditure. Using in silico approach, we have identified the major genes (LEP, LEPR, JAK2, STAT3, NPY, POMC, IRS1, SOCS3) that play crucial role in leptin signaling pathway. Further, eight miRNAs (hsa-miR-204-5p, hsa-miR-211-5p, hsa-miR-30, hsa-miR-3163, hsa-miR-33a-3p, hsa-miR-548, hsa-miR-561-3p, hsa-miR-7856-5p) from TargetScan 8.0 database were screened out that commonly target these genes. The role of these miRNAs should be explored as they might play vital role in regulating the appetite, energy metabolism, metabolic diseases (obesity, type 2 diabetes, cardiovascular diseases, inflammation), and to combat extreme environments. The miRNAs regulating leptin signaling and appetite may be useful for developing novel therapeutics for metabolic diseases.</p>","PeriodicalId":19948,"journal":{"name":"Pharmacology Research & Perspectives","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253706/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Research & Perspectives","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/prp2.1248","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The burden of growing concern about the dysregulation of metabolic processes arises due to complex interplay between environment and nutrition that has great impact on genetics and epigenetics of an individual. Thereby, any abnormality at the level of food intake regulating hormones may contribute to the development of metabolic diseases in any age group due to malnutrition, overweight, changing lifestyle, and exposure to extreme environments such as heat stress (HS), cold stress, or high altitude (HA). Hormones such as leptin, adiponectin, ghrelin, and cholecystokinin regulate appetite and satiety to maintain energy homeostasis. Leptin, an adipokine and a pleiotropic hormone, play major role in regulating the food intake, energy gain and energy expenditure. Using in silico approach, we have identified the major genes (LEP, LEPR, JAK2, STAT3, NPY, POMC, IRS1, SOCS3) that play crucial role in leptin signaling pathway. Further, eight miRNAs (hsa-miR-204-5p, hsa-miR-211-5p, hsa-miR-30, hsa-miR-3163, hsa-miR-33a-3p, hsa-miR-548, hsa-miR-561-3p, hsa-miR-7856-5p) from TargetScan 8.0 database were screened out that commonly target these genes. The role of these miRNAs should be explored as they might play vital role in regulating the appetite, energy metabolism, metabolic diseases (obesity, type 2 diabetes, cardiovascular diseases, inflammation), and to combat extreme environments. The miRNAs regulating leptin signaling and appetite may be useful for developing novel therapeutics for metabolic diseases.
期刊介绍:
PR&P is jointly published by the American Society for Pharmacology and Experimental Therapeutics (ASPET), the British Pharmacological Society (BPS), and Wiley. PR&P is a bi-monthly open access journal that publishes a range of article types, including: target validation (preclinical papers that show a hypothesis is incorrect or papers on drugs that have failed in early clinical development); drug discovery reviews (strategy, hypotheses, and data resulting in a successful therapeutic drug); frontiers in translational medicine (drug and target validation for an unmet therapeutic need); pharmacological hypotheses (reviews that are oriented to inform a novel hypothesis); and replication studies (work that refutes key findings [failed replication] and work that validates key findings). PR&P publishes papers submitted directly to the journal and those referred from the journals of ASPET and the BPS