Strategy for Designing In Vivo Dose-Response Comparison Studies.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Steven Novick, Tianhui Zhang
{"title":"Strategy for Designing In Vivo Dose-Response Comparison Studies.","authors":"Steven Novick, Tianhui Zhang","doi":"10.1002/pst.2421","DOIUrl":null,"url":null,"abstract":"<p><p>In preclinical drug discovery, at the step of lead optimization of a compound, in vivo experimentation can differentiate several compounds in terms of efficacy and potency in a biological system of whole living organisms. For the lead optimization study, it may be desirable to implement a dose-response design so that compound comparisons can be made from nonlinear curves fitted to the data. A dose-response design requires more thought relative to a simpler study design, needing parameters for the number of doses, the dose values, and the sample size per dose. This tutorial illustrates how to calculate statistical power, choose doses, and determine sample size per dose for a comparison of two or more dose-response curves for a future in vivo study.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In preclinical drug discovery, at the step of lead optimization of a compound, in vivo experimentation can differentiate several compounds in terms of efficacy and potency in a biological system of whole living organisms. For the lead optimization study, it may be desirable to implement a dose-response design so that compound comparisons can be made from nonlinear curves fitted to the data. A dose-response design requires more thought relative to a simpler study design, needing parameters for the number of doses, the dose values, and the sample size per dose. This tutorial illustrates how to calculate statistical power, choose doses, and determine sample size per dose for a comparison of two or more dose-response curves for a future in vivo study.

设计体内剂量-反应比较研究的策略
在临床前药物发现中,在化合物的先导优化步骤中,体内实验可以区分几种化合物在整个生物体的生物系统中的疗效和效力。在先导优化研究中,最好采用剂量-反应设计,这样就可以通过与数据拟合的非线性曲线对化合物进行比较。与简单的研究设计相比,剂量反应设计需要更多的考虑,需要剂量数、剂量值和每个剂量的样本量等参数。本教程说明了如何计算统计功率、选择剂量以及确定每个剂量的样本量,以便在未来的体内研究中比较两个或多个剂量-反应曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信