Nathaniel J Spencer, LaGuinn P Sherlock, Nina Pryor, Nandini Iyer, Hilary L Gallagher, Douglas S Brungart
{"title":"The effects of extended-wear hearing aids on the localization accuracy of listeners with normal audiometric thresholds.","authors":"Nathaniel J Spencer, LaGuinn P Sherlock, Nina Pryor, Nandini Iyer, Hilary L Gallagher, Douglas S Brungart","doi":"10.1121/10.0026596","DOIUrl":null,"url":null,"abstract":"<p><p>Extended-wear hearing aids (EWHAs) are small broadband analog amplification devices placed deeply enough in the ear canal to preserve most of the cues in the head-related transfer function. However, little is known about how EWHAs affect localization accuracy for normal hearing threshold (NHT) listeners. In this study, eight NHT participants were fitted with EWHAs and localized broadband sounds of different durations (250 ms and 4 s) and stimulus intensities (40, 50, 60, 70, and 80 dBA) in a spherical speaker array. When the EWHAs were in the active mode, localization accuracy was only slightly degraded relative to open-ear performance. However, when the EWHAs were turned off, localization performance was substantially degraded even at the highest stimulus intensities. An electro-acoustical evaluation of the EWHAs showed minimal effects of dynamic range compression on the signals and good preservation of the signal pattern for vertical polar sound localization. Between-study comparisons suggest that EWHA active mode localization accuracy is favorable compared to conventional active earplugs, and EWHA passive mode localization accuracy is comparable to conventional passive earplugs. These results suggest that the deep-insertion analog design of the EWHA is generally better at preserving localization accuracy of NHT listeners than conventional earplug devices.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0026596","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Extended-wear hearing aids (EWHAs) are small broadband analog amplification devices placed deeply enough in the ear canal to preserve most of the cues in the head-related transfer function. However, little is known about how EWHAs affect localization accuracy for normal hearing threshold (NHT) listeners. In this study, eight NHT participants were fitted with EWHAs and localized broadband sounds of different durations (250 ms and 4 s) and stimulus intensities (40, 50, 60, 70, and 80 dBA) in a spherical speaker array. When the EWHAs were in the active mode, localization accuracy was only slightly degraded relative to open-ear performance. However, when the EWHAs were turned off, localization performance was substantially degraded even at the highest stimulus intensities. An electro-acoustical evaluation of the EWHAs showed minimal effects of dynamic range compression on the signals and good preservation of the signal pattern for vertical polar sound localization. Between-study comparisons suggest that EWHA active mode localization accuracy is favorable compared to conventional active earplugs, and EWHA passive mode localization accuracy is comparable to conventional passive earplugs. These results suggest that the deep-insertion analog design of the EWHA is generally better at preserving localization accuracy of NHT listeners than conventional earplug devices.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.