Management of functional constipation-associated halitosis: a retrospective study.

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS
Xiao Xian Qian 钱孝先
{"title":"Management of functional constipation-associated halitosis: a retrospective study.","authors":"Xiao Xian Qian 钱孝先","doi":"10.1088/1752-7163/ad63c4","DOIUrl":null,"url":null,"abstract":"<p><p>The features of functional constipation (FC)-associated halitosis were identified in the author's previous report. In this report, the author aimed to further investigate its treatment and efficacy. This retrospective study reviewed 100 FC patients, including 82 (82%) halitosis patients and 18 (18%) non-halitosis patients. They underwent the organoleptic test (OLT) to diagnose halitosis, and the organoleptic score (OLS) (0-5) was used to evaluated halitosis severity. The Cleveland Clinical Constipation Score (CCCS) (0-30) was used to evaluate FC severity. Patients were treated with the laxative polyethylene glycol electrolyte powder (PGEP) for four weeks. These tests were performed before and after treatment. The author found that, before treatment, the CCCS was 20.00 (18.00-23.00) for all patients, 21.00 (19.00-24.00) for halitosis patients, and 18.00 (17.00-18.25) for non-halitosis patients. A significant difference was observed between halitosis patients and non-halitosis patients (<i>P</i>< 0.001). The OLS for halitosis patients was 3.00 (3.00-4.00). A positive correlation (<i>r</i>= 0.814, 95% CI: 0.732-0.872,<i>P</i>< 0.001) was found between OLS and CCCS. A CCCS ⩾18 predicted over 50% probability of halitosis. After treatment, the CCCS significantly decreased to 11.50 (6.00-14.75) (<i>P</i>< 0.001), and OLS significantly decreased to 1.00 (0.00-2.00) (<i>P</i>< 0.001). A positive correlation (<i>r</i>= 0.770, 95% CI: 0.673-0.841,<i>P</i>< 0.001) persisted between OLS and CCCS. A pre-treatment CCCS ⩾21 predicted over 50% probability of post-treatment halitosis, while a post-treatment CCCS ⩾12 predicted over 50% probability of post-treatment halitosis. The author concludes that the severity of FC parallels the severity of FC-associated halitosis, and can predict the probability of halitosis. Laxative treatment with PGEP is effective in improving FC-associated halitosis.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad63c4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The features of functional constipation (FC)-associated halitosis were identified in the author's previous report. In this report, the author aimed to further investigate its treatment and efficacy. This retrospective study reviewed 100 FC patients, including 82 (82%) halitosis patients and 18 (18%) non-halitosis patients. They underwent the organoleptic test (OLT) to diagnose halitosis, and the organoleptic score (OLS) (0-5) was used to evaluated halitosis severity. The Cleveland Clinical Constipation Score (CCCS) (0-30) was used to evaluate FC severity. Patients were treated with the laxative polyethylene glycol electrolyte powder (PGEP) for four weeks. These tests were performed before and after treatment. The author found that, before treatment, the CCCS was 20.00 (18.00-23.00) for all patients, 21.00 (19.00-24.00) for halitosis patients, and 18.00 (17.00-18.25) for non-halitosis patients. A significant difference was observed between halitosis patients and non-halitosis patients (P< 0.001). The OLS for halitosis patients was 3.00 (3.00-4.00). A positive correlation (r= 0.814, 95% CI: 0.732-0.872,P< 0.001) was found between OLS and CCCS. A CCCS ⩾18 predicted over 50% probability of halitosis. After treatment, the CCCS significantly decreased to 11.50 (6.00-14.75) (P< 0.001), and OLS significantly decreased to 1.00 (0.00-2.00) (P< 0.001). A positive correlation (r= 0.770, 95% CI: 0.673-0.841,P< 0.001) persisted between OLS and CCCS. A pre-treatment CCCS ⩾21 predicted over 50% probability of post-treatment halitosis, while a post-treatment CCCS ⩾12 predicted over 50% probability of post-treatment halitosis. The author concludes that the severity of FC parallels the severity of FC-associated halitosis, and can predict the probability of halitosis. Laxative treatment with PGEP is effective in improving FC-associated halitosis.

功能性便秘相关口臭的治疗:一项回顾性研究。
作者在之前的报告中指出了功能性便秘(FC)相关口臭的特征。在本报告中,作者旨在进一步研究其治疗和疗效。这项回顾性研究回顾了 100 例功能性便秘患者,包括 82 例(82%)口臭患者和 18 例(18%)非口臭患者。他们接受了感官测试(OLT)来诊断口臭,并用感官评分(OLS)(0-5)来评估口臭的严重程度。克利夫兰临床便秘评分(CCCS)(0-30)用于评估 FC 的严重程度。患者接受为期四周的泻药聚乙二醇电解质粉(PGEP)治疗。这些测试分别在治疗前后进行。作者发现,在治疗前,所有患者的 CCCS 为 20.00(18.00-23.00),口臭患者为 21.00(19.00-24.00),非口臭患者为 18.00(17.00-18.25)。口臭患者与非口臭患者之间存在明显差异(P < 0.001)。口臭患者的 OLS 为 3.00(3.00-4.00)。OLS 与 CCCS 之间呈正相关(r = 0.814,95% CI:0.732-0.872,P <0.001)。CCCS≥18 预测口臭的可能性超过 50%。治疗后,CCCS 显著降至 11.50(6.00-14.75)(P < 0.001),OLS 显著降至 1.00(0.00-2.00)(P < 0.001)。OLS 和 CCCS 之间持续存在正相关(r = 0.770,95% CI:0.673-0.841,P <0.001)。治疗前 CCCS≥21 预测治疗后口臭的概率超过 50%,而治疗后 CCCS≥12 预测治疗后口臭的概率超过 50%。作者的结论是,FC 的严重程度与 FC 相关口臭的严重程度相似,可以预测口臭的概率。使用 PGEP 进行通便治疗可有效改善 FC 相关性口臭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信