{"title":"Ticagrelor increases its own potency at the P2Y12 receptor by directly changing the plasma membrane lipid order in platelets","authors":"Kyrylo Pyrshev, Florentin Allemand, Vahideh Rabani, Semen Yesylevskyy, Siamak Davani, Christophe Ramseyer, Jennifer Lagoutte-Renosi","doi":"10.1111/bph.16500","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Although the amphiphilic nature of the widely used antithrombotic drug Ticagrelor is well known, it was never considered as a membranotropic agent capable of interacting with the lipid bilayer in a receptor-independent way. In this study, we investigated the influence of Ticagrelor on plasma membrane lipid order in platelets and if this modulates the potency of Ticagrelor at the P2Y<sub>12</sub> receptor.</p>\n </section>\n \n <section>\n \n <h3> Experimental Approach</h3>\n \n <p>We combined fluorescent in situ, in vitro and in silico approaches to probe the interactions between the plasma membrane of platelets and Ticagrelor. The influence of Ticagrelor on the lipid order of the platelet plasma membrane and large unilamellar vesicles was studied using the advanced fluorescent probe NR12S. Furthermore, the properties of model lipid bilayers in the presence of Ticagrelor were characterized by molecular dynamics simulations. Finally, the influence of an increased lipid order on the dose-response of platelets to Ticagrelor was studied.</p>\n </section>\n \n <section>\n \n <h3> Key Results</h3>\n \n <p>Ticagrelor incorporates spontaneously into lipid bilayers and affects the lipid order of the membranes of model vesicles and isolated platelets, in a nontrivial composition and concentration-dependent manner. We showed that higher plasma membrane lipid order in platelets leads to a lower IC<sub>50</sub> value for Ticagrelor. It is shown that membrane incorporation of Ticagrelor increases its potency at the P2Y<sub>12</sub> receptor, by increasing the order of the platelet plasma membrane.</p>\n </section>\n \n <section>\n \n <h3> Conclusion and Implications</h3>\n \n <p>A novel dual mechanism of Ticagrelor action is suggested that combines direct binding to P2Y<sub>12</sub> receptor with simultaneous modulation of receptor-lipid microenvironment.</p>\n </section>\n </div>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bph.16500","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Purpose
Although the amphiphilic nature of the widely used antithrombotic drug Ticagrelor is well known, it was never considered as a membranotropic agent capable of interacting with the lipid bilayer in a receptor-independent way. In this study, we investigated the influence of Ticagrelor on plasma membrane lipid order in platelets and if this modulates the potency of Ticagrelor at the P2Y12 receptor.
Experimental Approach
We combined fluorescent in situ, in vitro and in silico approaches to probe the interactions between the plasma membrane of platelets and Ticagrelor. The influence of Ticagrelor on the lipid order of the platelet plasma membrane and large unilamellar vesicles was studied using the advanced fluorescent probe NR12S. Furthermore, the properties of model lipid bilayers in the presence of Ticagrelor were characterized by molecular dynamics simulations. Finally, the influence of an increased lipid order on the dose-response of platelets to Ticagrelor was studied.
Key Results
Ticagrelor incorporates spontaneously into lipid bilayers and affects the lipid order of the membranes of model vesicles and isolated platelets, in a nontrivial composition and concentration-dependent manner. We showed that higher plasma membrane lipid order in platelets leads to a lower IC50 value for Ticagrelor. It is shown that membrane incorporation of Ticagrelor increases its potency at the P2Y12 receptor, by increasing the order of the platelet plasma membrane.
Conclusion and Implications
A novel dual mechanism of Ticagrelor action is suggested that combines direct binding to P2Y12 receptor with simultaneous modulation of receptor-lipid microenvironment.
期刊介绍:
The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries.
Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues.
In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.