Mingyuan Tang, Yao Lei, Kehan Chen, Mingming Ding, Qian Ou, Jing Tang, Yunwen Zhang, Tian Tang, Chuan Wang
{"title":"Reducing the degree of crosslinking of peptidoglycan in Listeria monocytogenes promoted the secretion of membrane vesicles","authors":"Mingyuan Tang, Yao Lei, Kehan Chen, Mingming Ding, Qian Ou, Jing Tang, Yunwen Zhang, Tian Tang, Chuan Wang","doi":"10.1002/bit.28807","DOIUrl":null,"url":null,"abstract":"<p><i>Listeria monocytogenes</i> (LM) is a Gram-positive (G<sup>+</sup>) bacterium that secretes nanoscale membrane vesicles (MVs). LM MVs comprise various bacterial components and may have potential as an antigen or drug-delivery vehicle; however, the low yield of the LM MVs limits related research. G<sup>+</sup>-bacterial MVs germinate from the bacterial plasma membrane and must pass through a thick crosslinked peptidoglycan layer for release. Herein, we aimed to increase the release of MVs by reducing the degree of crosslinking of peptidoglycan. We knocked out two genes related to the longitudinal crosslinking of peptidoglycan, <i>dal</i> and <i>dat</i>, and supplemented the knocked-out <i>dal</i> gene through plasmid expression to obtain a stably inherited recombinant strain LMΔ<i>dd</i>::pCW633. The structure, particle size, and main protein components of MVs secreted by this recombinant strain were consistent with those secreted from the wild strain, but the yield of MVs was considerably increased (<i>p</i> < 0.05). Furthermore, <i>Listeria ivanovii</i> (LI) was found to secrete MVs that differed in the composition of the main proteins compared with those of LM MVs. The abovementioned method was also feasible for promoting the secretion of MVs from the attenuated LM strain and LI wild-type and attenuated strains. Our study provides a new method to increase the secretion of MVs derived from <i>Listeria</i> that could be extended to other G<sup>+</sup> bacteria.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 11","pages":"3629-3641"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28807","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Listeria monocytogenes (LM) is a Gram-positive (G+) bacterium that secretes nanoscale membrane vesicles (MVs). LM MVs comprise various bacterial components and may have potential as an antigen or drug-delivery vehicle; however, the low yield of the LM MVs limits related research. G+-bacterial MVs germinate from the bacterial plasma membrane and must pass through a thick crosslinked peptidoglycan layer for release. Herein, we aimed to increase the release of MVs by reducing the degree of crosslinking of peptidoglycan. We knocked out two genes related to the longitudinal crosslinking of peptidoglycan, dal and dat, and supplemented the knocked-out dal gene through plasmid expression to obtain a stably inherited recombinant strain LMΔdd::pCW633. The structure, particle size, and main protein components of MVs secreted by this recombinant strain were consistent with those secreted from the wild strain, but the yield of MVs was considerably increased (p < 0.05). Furthermore, Listeria ivanovii (LI) was found to secrete MVs that differed in the composition of the main proteins compared with those of LM MVs. The abovementioned method was also feasible for promoting the secretion of MVs from the attenuated LM strain and LI wild-type and attenuated strains. Our study provides a new method to increase the secretion of MVs derived from Listeria that could be extended to other G+ bacteria.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.