Localized special John–Nirenberg–Campanato spaces via congruent cubes with applications to boundedness of local Calderón–Zygmund singular integrals and fractional integrals

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Junan Shi, Hongchao Jia, Dachun Yang
{"title":"Localized special John–Nirenberg–Campanato spaces via congruent cubes with applications to boundedness of local Calderón–Zygmund singular integrals and fractional integrals","authors":"Junan Shi, Hongchao Jia, Dachun Yang","doi":"10.1007/s13540-024-00307-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(p,q\\in [1,\\infty )\\)</span>, <i>s</i> be a nonnegative integer, <span>\\(\\alpha \\in \\mathbb {R}\\)</span>, and <span>\\(\\mathcal {X}\\)</span> be <span>\\(\\mathbb {R}^n\\)</span> or a cube <span>\\(Q_0\\subsetneqq \\mathbb {R}^n\\)</span>. In this article, the authors introduce the localized special John–Nirenberg–Campanato spaces via congruent cubes, <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathcal {X})\\)</span>, and show that, when <span>\\(p\\in (1,\\infty )\\)</span>, the predual of <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathcal {X})\\)</span> is a Hardy-kind space <span>\\(hk_{(p',q',s)_{\\alpha }}^{\\textrm{con}}(\\mathcal {X})\\)</span>, where <span>\\(\\frac{1}{p}+\\frac{1}{p'}=1=\\frac{1}{q}+\\frac{1}{q'}\\)</span>. As applications, in the case <span>\\(\\mathcal {X}=\\mathbb {R}^n\\)</span>, the authors obtain the boundedness of local Calderón–Zygmund singular integrals and local fractional integrals on both <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span> and <span>\\(hk_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span>. One novelty of this article is to find the appropriate expression of local Calderón–Zygmund singular integrals on <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span> and the other novelty is that, for the boundedness on <span>\\(hk_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span>, the authors use the duality theorem to overcome the essential difficulties caused by the deficiency of both the molecular and the maximal function characterizations of <span>\\(hk_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00307-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(p,q\in [1,\infty )\), s be a nonnegative integer, \(\alpha \in \mathbb {R}\), and \(\mathcal {X}\) be \(\mathbb {R}^n\) or a cube \(Q_0\subsetneqq \mathbb {R}^n\). In this article, the authors introduce the localized special John–Nirenberg–Campanato spaces via congruent cubes, \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathcal {X})\), and show that, when \(p\in (1,\infty )\), the predual of \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathcal {X})\) is a Hardy-kind space \(hk_{(p',q',s)_{\alpha }}^{\textrm{con}}(\mathcal {X})\), where \(\frac{1}{p}+\frac{1}{p'}=1=\frac{1}{q}+\frac{1}{q'}\). As applications, in the case \(\mathcal {X}=\mathbb {R}^n\), the authors obtain the boundedness of local Calderón–Zygmund singular integrals and local fractional integrals on both \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\) and \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\). One novelty of this article is to find the appropriate expression of local Calderón–Zygmund singular integrals on \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\) and the other novelty is that, for the boundedness on \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\), the authors use the duality theorem to overcome the essential difficulties caused by the deficiency of both the molecular and the maximal function characterizations of \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\).

通过全等立方的局部特殊约翰-尼伦伯格-坎帕纳托空间及其在局部卡尔德龙-齐格蒙德奇异积分和分数积分的有界性中的应用
让(p,q在[1,\infty )\),s是一个非负整数,(\alpha \在\mathbb {R}\),并且(\mathcal {X}\)是\(\mathbb {R}^n\)或一个立方体(Q_0\subsetneqq \mathbb {R}^n\)。在这篇文章中,作者介绍了通过全等立方体的局部特殊约翰-尼伦伯格-坎帕纳托空间(jn_{(p,q,s)_{\alpha }}^{textrm{con}}(\mathcal {X})),并证明了当\(p\in (1,\infty )\)、(jn_{(p,q,s)_{\alpha}}^{\textrm{con}}(\mathcal {X}))的前域是一个哈代类空间 (hk_{(p',q'、s)_{\alpha }}^{\textrm{con}}(\mathcal {X})),其中(\frac{1}{p}+\frac{1}{p'}=1=\frac{1}{q}+\frac{1}{q'})。作为应用,在 \(\mathcal {X}=\mathbb {R}^n\) 的情况下,作者得到了局部卡尔德龙-齐格蒙奇异积分和局部分数积分在 \(jn_{(p、q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\)和 \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\)上的有界性。本文的一个新颖之处在于找到了 \(jn_{(p,q,s)_{\alpha }}^{textrm{con}}(\mathbb {R}^n)\ 上局部卡尔德龙-齐格蒙奇异积分的适当表达式,另一个新颖之处在于,对于 \(hk_{(p,q、s)_{\alpha}^{\textrm{con}}(\mathbb {R}^n)\)上的有界性,作者利用对偶定理克服了由于 \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\)的分子特征和最大函数特征的不足而造成的本质困难。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信