Localized special John–Nirenberg–Campanato spaces via congruent cubes with applications to boundedness of local Calderón–Zygmund singular integrals and fractional integrals
{"title":"Localized special John–Nirenberg–Campanato spaces via congruent cubes with applications to boundedness of local Calderón–Zygmund singular integrals and fractional integrals","authors":"Junan Shi, Hongchao Jia, Dachun Yang","doi":"10.1007/s13540-024-00307-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(p,q\\in [1,\\infty )\\)</span>, <i>s</i> be a nonnegative integer, <span>\\(\\alpha \\in \\mathbb {R}\\)</span>, and <span>\\(\\mathcal {X}\\)</span> be <span>\\(\\mathbb {R}^n\\)</span> or a cube <span>\\(Q_0\\subsetneqq \\mathbb {R}^n\\)</span>. In this article, the authors introduce the localized special John–Nirenberg–Campanato spaces via congruent cubes, <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathcal {X})\\)</span>, and show that, when <span>\\(p\\in (1,\\infty )\\)</span>, the predual of <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathcal {X})\\)</span> is a Hardy-kind space <span>\\(hk_{(p',q',s)_{\\alpha }}^{\\textrm{con}}(\\mathcal {X})\\)</span>, where <span>\\(\\frac{1}{p}+\\frac{1}{p'}=1=\\frac{1}{q}+\\frac{1}{q'}\\)</span>. As applications, in the case <span>\\(\\mathcal {X}=\\mathbb {R}^n\\)</span>, the authors obtain the boundedness of local Calderón–Zygmund singular integrals and local fractional integrals on both <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span> and <span>\\(hk_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span>. One novelty of this article is to find the appropriate expression of local Calderón–Zygmund singular integrals on <span>\\(jn_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span> and the other novelty is that, for the boundedness on <span>\\(hk_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span>, the authors use the duality theorem to overcome the essential difficulties caused by the deficiency of both the molecular and the maximal function characterizations of <span>\\(hk_{(p,q,s)_{\\alpha }}^{\\textrm{con}}(\\mathbb {R}^n)\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00307-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(p,q\in [1,\infty )\), s be a nonnegative integer, \(\alpha \in \mathbb {R}\), and \(\mathcal {X}\) be \(\mathbb {R}^n\) or a cube \(Q_0\subsetneqq \mathbb {R}^n\). In this article, the authors introduce the localized special John–Nirenberg–Campanato spaces via congruent cubes, \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathcal {X})\), and show that, when \(p\in (1,\infty )\), the predual of \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathcal {X})\) is a Hardy-kind space \(hk_{(p',q',s)_{\alpha }}^{\textrm{con}}(\mathcal {X})\), where \(\frac{1}{p}+\frac{1}{p'}=1=\frac{1}{q}+\frac{1}{q'}\). As applications, in the case \(\mathcal {X}=\mathbb {R}^n\), the authors obtain the boundedness of local Calderón–Zygmund singular integrals and local fractional integrals on both \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\) and \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\). One novelty of this article is to find the appropriate expression of local Calderón–Zygmund singular integrals on \(jn_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\) and the other novelty is that, for the boundedness on \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\), the authors use the duality theorem to overcome the essential difficulties caused by the deficiency of both the molecular and the maximal function characterizations of \(hk_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\).