Petru-Daniel Tudosiu, Walter H. L. Pinaya, Pedro Ferreira Da Costa, Jessica Dafflon, Ashay Patel, Pedro Borges, Virginia Fernandez, Mark S. Graham, Robert J. Gray, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
{"title":"Realistic morphology-preserving generative modelling of the brain","authors":"Petru-Daniel Tudosiu, Walter H. L. Pinaya, Pedro Ferreira Da Costa, Jessica Dafflon, Ashay Patel, Pedro Borges, Virginia Fernandez, Mark S. Graham, Robert J. Gray, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso","doi":"10.1038/s42256-024-00864-0","DOIUrl":null,"url":null,"abstract":"Medical imaging research is often limited by data scarcity and availability. Governance, privacy concerns and the cost of acquisition all restrict access to medical imaging data, which, compounded by the data-hungry nature of deep learning algorithms, limits progress in the field of healthcare AI. Generative models have recently been used to synthesize photorealistic natural images, presenting a potential solution to the data scarcity problem. But are current generative models synthesizing morphologically correct samples? In this work we present a three-dimensional generative model of the human brain that is trained at the necessary scale to generate diverse, realistic-looking, high-resolution and morphologically preserving samples and conditioned on patient characteristics (for example, age and pathology). We show that the synthetic samples generated by the model preserve biological and disease phenotypes and are realistic enough to permit use downstream in well-established image analysis tools. While the proposed model has broad future applicability, such as anomaly detection and learning under limited data, its generative capabilities can be used to directly mitigate data scarcity, limited data availability and algorithmic fairness. Medical imaging research is limited by data availability. To address this challenge, Tudosiu and colleagues develop a 3D generative model of the human brain that can generate high-resolution morphologically correct brains conditioned on patient characteristics.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 7","pages":"811-819"},"PeriodicalIF":18.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42256-024-00864-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00864-0","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Medical imaging research is often limited by data scarcity and availability. Governance, privacy concerns and the cost of acquisition all restrict access to medical imaging data, which, compounded by the data-hungry nature of deep learning algorithms, limits progress in the field of healthcare AI. Generative models have recently been used to synthesize photorealistic natural images, presenting a potential solution to the data scarcity problem. But are current generative models synthesizing morphologically correct samples? In this work we present a three-dimensional generative model of the human brain that is trained at the necessary scale to generate diverse, realistic-looking, high-resolution and morphologically preserving samples and conditioned on patient characteristics (for example, age and pathology). We show that the synthetic samples generated by the model preserve biological and disease phenotypes and are realistic enough to permit use downstream in well-established image analysis tools. While the proposed model has broad future applicability, such as anomaly detection and learning under limited data, its generative capabilities can be used to directly mitigate data scarcity, limited data availability and algorithmic fairness. Medical imaging research is limited by data availability. To address this challenge, Tudosiu and colleagues develop a 3D generative model of the human brain that can generate high-resolution morphologically correct brains conditioned on patient characteristics.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.