Quantum KdV hierarchy and quasimodular forms

IF 1.2 3区 数学 Q1 MATHEMATICS
Jan-Willem M. van Ittersum, Giulio Ruzza
{"title":"Quantum KdV hierarchy and quasimodular forms","authors":"Jan-Willem M. van Ittersum, Giulio Ruzza","doi":"10.4310/cntp.2024.v18.n2.a4","DOIUrl":null,"url":null,"abstract":"Dubrovin $\\href{https://doi.org/10.1007/s00023-015-0449-2}{[10]}$ has shown that the spectrum of the quantization (with respect to the first Poisson structure) of the dispersionless Korteweg–de Vries (KdV) hierarchy is given by shifted symmetric functions; the latter are related by the Bloch–Okounkov Theorem $\\href{https://doi.org/10.1007/JHEP07(2014)141}{[1]}$ to quasimodular forms on the full modular group. We extend the relation to quasimodular forms to the full quantum KdV hierarchy (and to the more general quantum Intermediate Long Wave hierarchy). These quantum integrable hierarchies have been defined by Buryak and Rossi $\\href{https://doi.org/10.1007/s11005-015-0814-6}{[6]}$ in terms of the double ramification cycle in the moduli space of curves. The main tool and conceptual contribution of the paper is a general effective criterion for quasimodularity.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"12 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2024.v18.n2.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dubrovin $\href{https://doi.org/10.1007/s00023-015-0449-2}{[10]}$ has shown that the spectrum of the quantization (with respect to the first Poisson structure) of the dispersionless Korteweg–de Vries (KdV) hierarchy is given by shifted symmetric functions; the latter are related by the Bloch–Okounkov Theorem $\href{https://doi.org/10.1007/JHEP07(2014)141}{[1]}$ to quasimodular forms on the full modular group. We extend the relation to quasimodular forms to the full quantum KdV hierarchy (and to the more general quantum Intermediate Long Wave hierarchy). These quantum integrable hierarchies have been defined by Buryak and Rossi $\href{https://doi.org/10.1007/s11005-015-0814-6}{[6]}$ in terms of the double ramification cycle in the moduli space of curves. The main tool and conceptual contribution of the paper is a general effective criterion for quasimodularity.
量子 KdV 层次和准模态
Dubrovin $\href{https://doi.org/10.1007/s00023-015-0449-2}{[10]}$ 证明了无色散 Korteweg-de Vries(KdV)层次结构的量子化频谱(关于第一泊松结构)是由移位对称函数给出的;后者通过布洛赫-奥孔科夫定理 $\href{https://doi.org/10.1007/JHEP07(2014)141}{[1]}$ 与全模组上的准模态相关。我们把准模形式的关系扩展到完整的量子 KdV 层次(以及更一般的量子中间长波层次)。布里亚克和罗西 $\href{https://doi.org/10.1007/s11005-015-0814-6}{[6]}$ 用曲线模空间的双斜面循环定义了这些量子可积分层次。本文的主要工具和概念贡献是准模性的一般有效准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信