Asad Ali Malik, Muhammad Ali Jamshed, Ali Nauman, Adeel Iqbal, Atif Shakeel, Riaz Hussain
{"title":"Performance evaluation of handover triggering condition estimation using mobility models in heterogeneous mobile networks","authors":"Asad Ali Malik, Muhammad Ali Jamshed, Ali Nauman, Adeel Iqbal, Atif Shakeel, Riaz Hussain","doi":"10.1049/ntw2.12120","DOIUrl":null,"url":null,"abstract":"<p>Heterogeneous networks (HetNets) refer to the communication network, consisting of different types of nodes connected through communication networks deploying diverse radio access technologies like LTE, Wi-Fi, Zigbee, and Z-wave, and using different communication protocols and operating frequencies. Vertical handover, is the process of switching a mobile device from one network type to another, such as from a cellular network to a Wi-Fi network, and is critical for ensuring a seamless user experience and optimal network performance, within the handover process handover triggering estimation is one of the crucial step affecting the overall performance. A mathematical analysis is presented for the handover triggering estimation. The performance evaluation shows significant improvement in the probability of successful handover using the proposed handover triggering condition based on speed, distance, and different mobility models. The handover triggering condition is optimised based on the speed of the mobile node, handover completion time, and the coverage range of the current and the target networks of the HetNet node, with due consideration of the mobility model.</p>","PeriodicalId":46240,"journal":{"name":"IET Networks","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ntw2.12120","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Networks","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ntw2.12120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous networks (HetNets) refer to the communication network, consisting of different types of nodes connected through communication networks deploying diverse radio access technologies like LTE, Wi-Fi, Zigbee, and Z-wave, and using different communication protocols and operating frequencies. Vertical handover, is the process of switching a mobile device from one network type to another, such as from a cellular network to a Wi-Fi network, and is critical for ensuring a seamless user experience and optimal network performance, within the handover process handover triggering estimation is one of the crucial step affecting the overall performance. A mathematical analysis is presented for the handover triggering estimation. The performance evaluation shows significant improvement in the probability of successful handover using the proposed handover triggering condition based on speed, distance, and different mobility models. The handover triggering condition is optimised based on the speed of the mobile node, handover completion time, and the coverage range of the current and the target networks of the HetNet node, with due consideration of the mobility model.
IET NetworksCOMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
5.00
自引率
0.00%
发文量
41
审稿时长
33 weeks
期刊介绍:
IET Networks covers the fundamental developments and advancing methodologies to achieve higher performance, optimized and dependable future networks. IET Networks is particularly interested in new ideas and superior solutions to the known and arising technological development bottlenecks at all levels of networking such as topologies, protocols, routing, relaying and resource-allocation for more efficient and more reliable provision of network services. Topics include, but are not limited to: Network Architecture, Design and Planning, Network Protocol, Software, Analysis, Simulation and Experiment, Network Technologies, Applications and Services, Network Security, Operation and Management.